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CONTROL ARCHITECTURE DESIGN AND DEMONSTRATION
FOR COOPERATIVE UAV’S

AFOSR # FA9550-04-1-0458

Jonathan P. How
Aerospace Controls Laboratory
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

Abstract

The research objective is to develop algorithms that can be embedded in a distributed
coordination and control architecture for teams of multiple UAVs. The main prob-
lem is to determine the role of errors in the situational awareness (SA) in the fleet
coordination problem by investigating two fundamental questions: how does specific
sensor information impact the estimation error, and how does this estimation error
impact the control performance? The answers to these questions will provide a clear
indication of the impact of errors in the SA on the control performance and should
enable the design of an efficient (and dynamic) communication architecture. Our re-
search has resulted in several algorithms that use mixed-integer linear programming
(MILP) to perform both the activity and path planning components of the team co-
ordination. The focus of recent work has been on improving the robustness of the
various planning algorithms to uncertainty in the information available. We have
also added four new UAVs to the multi-UAV testbed that is being used to evaluate
various distributed control architectures.

Research Status

The following progress has been made in the past year:

1. Developed new distributed task assignment algorithm that removes inconsisten-
cies due to imperfect information across the UAV team by communicating the
plans to resolve conflicts [1]. Simulation results show that the new approach is
more efficient than simply trying to fully synchronize the situational awareness.

2. Developed new theoretical approach to optimal search that captures the uncer-
tainty typically present in a priori descriptions of the targets and threats in the
environment [2].

3. Extended our Robust Model Predictive Controller (RMPC) [3] algorithm to
develop a “Robust Safe but Knowledgeable” (RSBK) approach [4]. Compared
our RMPC algorithm with a LMI-based min-max approach, and developed a
hybrid algorithm that retains the advantages of both [5].

4. Augmented the previous UAV fleet with 4 Monocoupe 90As [9)].

5. Performed an experimental demonstration of our decentralized MPC algorithm
using three rovers [6,7]. Extended the RMPC algorithm to a variable horizon
formulation that is less restrictive for vehicle maneuvering problems [8].

The following sections provide more detail on the main topics.
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Fig. 1: Left: Robust Distributed Task Assignment algorithm showing the two stages
of communication used. Right: Comparison of effectiveness of communication in the
2 phases of the RDTA algorithm (consensus and planning) on the performance.

Distributed Task Assignment: Recent work has focused on developing a new
robust distributed task assignment (RDTA) algorithm for a team of UAVs. Central-
ized planning can be impractical due to constraints on the computation (algorithm
scalability) and communication (robustness). However, task planning is hard to de-
centralize because of the strong coupling between agents in the choice of the tasks.
tion across the fleet, have each agent plan by running a centralized method, and
then implement their own resulting plan, but this “implicit coordination” approach
can easily fail by giving conflicting plans if the synchronization is poor, so it places
stringent requirements on the communication resources [1]. Furthermore, reaching
consensus is not always possible for large teams in a complex, rapidly changing en-
vironment. We have extended the basic implicit coordination approach to achieve
better (i.e., more consistent) performance with imperfect data synchronization. The
resulting Robust Distributed Task Assignment method shown in Fig. 1 assumes some
degree of data synchronization, but adds a second planning step based on shared
planning data. This exchange of candidate plans guarantees that all UAVs have the
same information during the final planning step, which ensures that the independently
designed plans are consistent. The approach is analogous to closing a synchronization
loop on the planning process to reduce the sensitivity to exogenous disturbances.

The performance of the algorithm was investigated for a scenario with 5 UAVs and
10 targets to show the advantages of this method in reducing the conflicts in the
assignments, generating feasible plans and increasing the performance of the plan
compared to implicit coordination. Fig. 1 compares the effect of communication
(measured in words) in the different phases of the planning (reaching consensus in SA,
communicating plans) on the performance of the assignment. Note that in this plot,
implicit coordination is effectively equivalent to communicating 2 words, or one petal,
in the planning phase. The graph shows that increasing the communication during
either the consensus or planning phases improves the team performance. To maximize
the performance, it is clear that some communication in both phases is needed, but the



results also clearly show that communication in the planning phase is more efficient
than in the information phase in the sense that 8 words of communication in the
planning phase have approximately the same effect on performance as 80 words in the
consensus phase. This improved efficiency indicates that RDTA provides a tractable
distributed planning approach for complex task allocation problems.

Robust Search: We have extended traditional search algorithms to account for
uncertainty in the initial information. Most, if not all, previous research assumes
that the initial target information (such as the probability of target existence in each
grid cell) is known precisely. This assumption is very restrictive, particularly in highly
uncertain environments, because poor/conflicting intelligence, communication delays,
or noisy sensors will cause uncertainty in the information. Our algorithm relaxes the
assumption on the precision of the initial knowledge by generalizing the prior in-
formation to be a distribution on the initial distribution [2]. The Beta distribution
(f(z) = %CL) 211 — z), z € [0,1]) is used to describe the uncertainty in the
initial probability (i.e., the support is the prior probability of target existence). A
key benefit of using Beta distributions is the analytical tractability since, by assuming
a very general Bernoulli sensor model, the Beta distribution is a conjugate distribu-
tion, and therefore the Beta distribution property is preserved through a Bayesian

measurement update.

This new search formulation was used [2] to

. . . . Mean time on target: a = 0.85,& = (.95
develop analytic predictions of the mean time g ¢

to look at a target in order to raise the confi- Target ONom | @New
dence of a target existence beyond a predefined 1 0.89 | 0.85
threshold @. This metric (also called, looks 2 0.90 | 0.85
or glints) is useful for planning because, given 3 0.87 | 0.8
the prior uncertainty description of the prior 4 i 085 | 0.85
probability, an estimate for the UAV “time on Total Time | 280 | 196

target” can be obtained. For example, consider a scenario with 4 targets in the envi-
ronment and an assumed initial probability of existence of 50%; a target is considered
detected if the probability exceeded a confidence of o = 0.85; and the sensor error
was assumed to be £ = 0.95 (probability of correct detection). Using the mean time
on target for a nominal planning scheme (column 2 in the table), each target exceeds
the prescribed threshold for a 280-step mission. Our new robust algorithm developed
a 196-step mission that exceeded the confidence for each target, a reduction of 30%
from the nominal.

Trajectory Optimization: Model Predictive Control (MPC) is a powerful tool
for the UAV guidance problem because optimization-based controllers can operate
close to constraint boundaries to obtain better performance than traditional control
approaches. As a result, however, small disturbances could drive the system infeasible,
so we must account for external disturbances and modeling errors. We have developed
a new robust MPC (RMPC) approach that uses constraint tightening (CT) [15] with
a more general candidate policy, thereby leading to a less constrained optimization
and hence a less conservative controller [3,7,8,10]. The approach retains “margin”
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Fig. 2: RSBK compared with previous algorithms, which fail to navigate the UAV to
the goal due to disturbances or local minimum.

for future feedback action, which becomes available to the MPC optimization as time
progresses. Since robustness follows only from the constraint modifications, only
nominal predictions are required, avoiding both the large growth in problem size
associated with incorporating multivariable uncertainty in the prediction model and
the conservatism associated with worst case cost predictions, a common alternative.

Robust Safe but Knowledgeable (RSBK) Algorithm: We extended the RMPC algo-
rithm to design trajectories for a UAV performing long-range maneuvers [4]. RSBK
uses a robust control invariant admissible set as the terminal set of each plan that
does not need to be a target set of the overall guidance problem. The approach is
similar to the previous RH-MILP algorithm, where the controller designs a detailed
trajectory over a short planning horizon using a shortest-path approximation of the
cost-to-go. For RSBK this cost-to-go estimate is based on the tightened constraints,
so that the future maneuver is feasible, even with the disturbance inputs. Fig. 2
shows numerical simulations that highlight the advantages of the RSBK algorithm:
the vehicle is guaranteed to remain safe under the influence of disturbances; much
longer robust trajectories can be constructed on-line. Combined with our Decentral-
ized MPC (DMPC) work [7], our new algorithm can be used to generate trajectories
for multiple vehicles maneuvering in a complex and uncertain environment.

Hybrid Robust MPC Algorithm: Another chal- J mﬂ‘ 7 t/fc-Tv

lenge associated with RMPC is to achieve bet- 2‘5 | _H tl;id

ter performance under worse-case disturbance ‘ System 2 7 §

inputs. We unified our constraint tighten- 20 //

ing RMPC algorithm with a min-max RMPC 18 /

algorithm that uses Linear Matrix Inequal- o / system1 9T

ities (LMIs) and robust optimization tech- 05 r - L,!‘!n?sfids
0.0 P

niques [16] to achieve robustness and perfor-
mance [5]. Although apparently different in
structure, we show that these two MPC algo-
rithms are closely related, and actually have
equivalent decision variables when performing
a closed-loop prediction. Based on this analysis we developed a hybrid algorithm that
retains the advantages of both: a) large feasible region indicating the algorithm can
tolerate higher disturbance levels; b) performance guarantees under worst-case dis-

random worstcase 4
Fig. 3: Perf comparison of 3
RMPC algorithms under different
disturbance inputs
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Fig. 4: Flight data showing show the relative separation error between 2 UAVs during
an autonomous in-flight rendezvous with a photo from onboard.

turbance inputs. As shown in Fig. 3, the three algorithms have similar performance
with random (but bounded) disturbance inputs. When the worst case disturbances
are applied, however, the hybrid algorithm outperforms the CT algorithm because it
uses a min-max cost. With a more constrained system (System 2), the hybrid algo-
rithm achieves better performance than the LMI-based algorithm because its larger
feasible set gives a larger operating region.

Multi-UAV Testbed: The UAV testbed has been operated autonomously on nu-
merous occasions [9]. For example, Fig. 4 shows the relative position error for two of
the UAVs performing an autonomous rendezvous. The position error is shown to con-
verge to within 25 m. Wind disturbances during this flight were approximately 1 m/s
(=~5% of flight speed). The relative position errors show the vehicles maintaining
coordinated flight despite the moderate disturbance levels acting on the system.
A second type of UAV has been added to
the testbed using a Monocoupe airframe
(see Fig. 5), which have several advantages
over the Trainer 60 (double wing area al-
lows for a payload capacity of up to 5 lbs
and larger fuel capacity increases the flight
time to 2 hours). These vehicles can also
be purchased as almost ready to fly, so
they retain the operational simplicity orig-
inally envisaged for the UAV testbed. The current testbed has four Monocoupes that
fly with the Trainer 60’s in a heterogeneous team.

Fig. 5: Comparison of Monocoupe and
Trainer 60 in the MIT UAV testbed.
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CONTROL ARCHITECTURE DESIGN AND DEMONSTRATION
FOR COOPERATIVE UAV’S
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Jonathan P. How
Aerospace Controls Laboratory
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Abstract

The research objective is to develop algorithms that can be embedded in a distributed
coordination and control architecture for teams of multiple UAVs. The main problem
is to determine the role of errors in the situational awareness (SA) in the fleet coordi-
nation problem by investigating two fundamental questions: how does specific sensor
information impact the estimation error, and how does this estimation error impact
the control performance? The answers to these questions will provide a clear indica-
tion of the impact of errors in the SA on the control performance and should enable
the design of an efficient (and dynamic) communication architecture. Our research
has resulted in several algorithms that use mixed-integer linear programming (MILP)
to perform both the activity and path planning components of the team coordina-
tion, and recent work has focused on improving the robustness of these algorithms to
uncertainty in the SA. We have also implemented these algorithms on our external
multi-UAV testbed and a new indoor multi-UAV testbed.

Research Status
The following progress has been made in the past year:

1. Demonstrated the benefits of our distributed task assignment algorithm for
sparse communication networks. Extended previous consensus algorithms to
remove the bias in the estimates for general network architectures [12,16,19,5].

2. Developed new theoretical approach to optimal search that captures the uncer-
tainty typically present in a priori descriptions of the targets and threats in the
environment [13,15,21,24].

3. Developed new computationally efficient decentralized MPC (DMPC) algo-
rithms for multi-vehicle systems coupled through their constraints, which is the
case for collision avoidance and formation flying scenarios. These techniques
maintain robust feasibility of the entire team using local communication and
computation, and thus scale well with the size of the UAV team [1,17,4,18,3,7].

4. Extended the DMPC algorithms to enable cooperation between vehicles with-
out substantially increasing the sub-problem size [14]. Results indicate that
this extension has the potential of significant performance improvements over
previous techniques [22].

5. Performed an experimental demonstration of our distributed MPC algorithm
through its distributed implementation on three rovers [7].

The following sections provide more detail on the main topics.



Distributed Planning: Previous reports presented a new robust distributed task
assignment (RDTA) algorithm for a team of UAVs. We extended the analysis of that
algorithm to consider the performance with different communication architectures and
errors. The results show that the second communication step introduced during the
planning phase of RDTA is crucial for very sparse networks because the convergence
rate of the information consensus algorithms tends to be quite slow [12,19].

Developing a consensus for a team of agents with inconsistent information is a core
component of many decentralized planning schemes, including RDTA. Numerous re-
searchers have investigated this problem, and recent results proposed a Kalman con-
sensus algorithm (KCA) and gave a detailed analysis of its convergence. However,
we demonstrated that this KCA can result in biased estimates that deviate from the
centralized solution, if it had been computed. The bias is shown to be related to a
“double counting” of the information from agents that have a higher outflow (con-
nectivity to the other agents) in the network. We modified the algorithm to correctly
handle the differences in outflows in general networks, and the proof of convergence
for this Modified Distributed Kalman Consensus (MDKC) algorithm to the unbiased
estimate is provided for both static and dynamic communication networks [16,5].

Robust Planning: We developed a new robust approach to the task assignment
of UAVs operating in uncertain dynamic environments for which the optimization
data, such as target cost and target-UAV distances, are time-varying and uncer-
tain [6,23]. The impact of this uncertainty in the data is mitigated by combining
robust and adaptive planning, resulting in the Robust Filter-Embedded Task Assign-
ment (RFETA) algorithm that uses both proactive techniques that hedge against
the uncertainty and reactive approaches that limit churning behavior by the vehicles.
Typical simulation results for a small problem are shown in Figure 1, which plots the
actual accumulated score during a mission. Compared to the nominal algorithm, the
robust strategy achieves a higher final accumulated value, which is consistent with
selecting better task assignments given the uncertain data. The original FETA algo-
rithm gives a faster convergence to the final value, which is consistent with avoiding
churning, but the RFETA approach gives the same fast convergence, a higher final
score, and the least standard deviation, and thus is the best overall strategy.

Robust Search: The goal of this research is robust assignment of search tasks in the
presence of dynamic and uncertain target motion [13,15,21,24]. The approach taken
is probabilistic, based on discrete-state, discrete-time Markov chain-like models. The
target motion across the discretized environment is described by a probabilistic state
transition matrix, where the transition to adjacent cells is fully represented by prob-
ability distributions. While the probabilities used to encode information about the
environment are typically assumed to be exactly known in the search theory litera-
ture, they are often the result of prior information that is both erroneous and delayed,
and will likely be poorly known to mission designers. Our work has developed a new
framework that accounts for this uncertainty in the probability maps for stationary
targets, and we recently extended the approach to consider dynamic environments.

The dynamic case considers uncertainty in the prior information, and creates Un-
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Fig. 1: Accumulated score and associ- Fig. 2: Number of targets found (top)
ated confidence level for four task plan- and thought to be found (bottom). BPE
ning algorithms. in blue, UPM in red.

certain Probability Maps (UPMs) that take into account both poor knowledge of the
probabilities and the propagation of their uncertainty through the environment. Many
methods could be chosen to describe the uncertainty, such as a truncated Gaussian
distribution, but these distributions must be chosen wisely because the measurement,
update following the prediction can be computationally intensive if the distributions
are not conjugate and sampling methods are needed to generate the posterior dis-
tribution. Our choice of the Beta distribution [13] to describe the uncertainty is
conjugate with the Bernoulli sensor model, and thus computationally efficient. This
new approach still requires an approximation in the prediction step that is similar to
other techniques, but this approximation does not add any significant computational
load because it can be written as a closed-form update to the mean and variance of
the Beta distributions associated with each cell. As a result, the prediction and mea-
surement update stages can be expressed as a recursion on the means and variances of
the distributions, which are very simple to implement and conceptually very similar
to conventional filtering methods.

A key result of this work is a new algorithm for implementing UPMs in real-time, and
it was demonstrated in various simulations that this algorithm leads to more cautious
information updates than previous approaches, and thus is less susceptible to false
alarms. For example, Figure 2 gives results for a simple scenario showing that our
UPM formulation creates a more realistic search strategy than the traditional Bayes
update scheme (BPE), which is overly optimistic [15]. These results also provide nu-
merous insights on the effect of the design parameters on the responsiveness of the new
algorithm. This work has been extended to embed the uncertainty in the probabilis-
tic target motion using Dirichlet distributions, and shows significant improvements
in the search performance over otherwise mismatched motion models [24].

Trajectory Optimization: We extended the robust safe but knowledgeable (RSBK)
algorithm [7-9,11,17,18] to the multi-vehicle case. RSBK has the advantage that it
enables the use of much shorter planning horizons while still preserving the robust
feasibility guarantees of our previous MPC approaches. A distributed version was also



developed (called DRSBK), which is more suitable for real-time execution, retains the
robust feasibility guarantees of the centralized approach, and only requires that each
agent have local knowledge of the environment and neighbor vehicles plans. DRSBK
also facilitates the use of a significantly more general implementation architecture
for the distributed trajectory optimization, which further decreases the delay due to
computation time [7,17].

T r[_.._co'operaﬁve' :
Extending that work further, we developed a ¢ Mon-cooperative
. . . . (out of range) L
new decentralized trajectory optimization ap- O centralized
proach for systems with independent dynam- . ° .
ics but coupled constraints [14,22]. The goal
was to improve the performance of the entire T -
fleet by including more cooperation between |
the vehicles. This is achieved by exploiting the
sparse structure of active couplings that is in-
herent in many of the trajectory optimization
problems of interest. This enables each local — -
optimization to use a low-order parameteriza-
tion of the other agents states, thereby facili-
tating negotiation while keeping the problem
size small. The key features of this approach 0 2 4 6
include (a) no central negotiator is required; — :
(b) it maintains feasibility over the iterations, }
so the algorithm can be stopped at any time; - 4|
and (c) the local optimizations are shown to L \ .
2 4 6

always decrease the overall cost. 0

M

8 10
cumulative computation time (sec)

Figure 3 shows simulation results comparing
the global objective value and cumulative com-
putation time of three algorithms: centralized,
(non-cooperative) decentralized, and the new
cooperative decentralized. Different planning horizons N = {4,6,8} and fleet sizes
ny were considered to investigate the scalability of the algorithms. The solutions of
the decentralized non-cooperative approach have very high cost and, although the
computation times are small, are off the plot. The lines with x show the evolution of
the global cost of the cooperative decentralized algorithm. The results show that this
new algorithm has objective values comparable to the centralized (and hence globally
optimal) solutions (o), but the computation scales much better with the fleet size.

Fig. 3: Performance and com-
putation comparison with ny =
{5,7,10,15} (top to bottom).

Multi-vehicle Testbeds: The multi-rover testbed was used to test the DRSBK
algorithm in real-time. Numerous scenarios (e.g. Fig. 4) were constructed to high-
light key features of the algorithm: on-board laptops generate trajectories on-line,
which shows the computational advantages for real-time applications; the rovers are
moving initially, which highlights the ability to quickly initialize the algorithms; the
vehicles are required to maneuver in a constrained environment, which demonstrates
the robust feasibility under the action of disturbances and that plans based on dis-



Fig. 4: DRSBK demonstration for obstacle and vehicle avoidance

tributed computation can satisfy the coupling collision avoidance constraints. The
results also demonstrated online dynamic grouping and re-grouping of the vehicles,
enabling parallel computation.

The UAV testbed (Figs. 5 and 6) is currently being used
to perform research on autonomous search and target
tracking [2]. The hardware is being upgraded to carry
additional onboard computers to increase the level of
autonomy, provide onboard vision processing, and sup-
port ad-hoc communication networks between vehicles.
The coordination algorithms described in the report are
also being demonstrated on a unique indoor testbed that  Fig. 6: Automatic video
includes multiple flying and ground vehicles [20]. tracking antenna.
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Abstract

The research objective is to develop algorithms that can be embedded in a distributed
coordination and control architecture for teams of multiple UAVs. The goal is to de-
termine the role of errors in the situational awareness (SA) in the fleet coordination
problem by investigating two fundamental questions: how does specific sensor infor-
mation impact the estimation error, and how does this estimation error impact the
control performance? The answers to these questions should provide a clear indica-
tion of the impact of errors in the SA on the control performance and should enable
the design of an efficient (and dynamic) communication architecture. Our research
has resulted in new algorithms to perform distributed task assignment that is robust
to poor network connectivity, coopcrative decentralized path planning that is robust
to environmental disturbances, and multi-UAV search that is robust to uncertainty in
the knowledge of the environment. We have implemented many of these algorithms
on our new indoor multi-UAV testbed called RAVEN.

Research Status
The following progress has been made in the past year:

1. Further analysis of our Unbiased Kalman-based Consensus Algorithm [4, 9, 10,
11]. Developed a new, completely decentralized, auction-based task assignment
algorithm that creates conflict free assignments with limited communication
and without relaying of information between agents. The algorithm is proven
to converge and is shown to be resource efficient [12].

2. Extended prior work on robust MPC [1, 3, 6, 7, 16, 17| using constraint tighten-
ing by generalizing the feedback correction policy. The new approach is shown
to represent a strictly larger class of feedback policies when compared to pre-
vious algorithms [19]. We also developed a new off-line convex optimization
procedure to design a disturbance rejection controller that can tolerate much
stronger disturbances leading to significant performance improvements over pre-
vious approaches at high disturbance levels [19, 21].

3. Developed a new cooperative decentralized optimization algorithm [6, 17] that
minimizes the global performance by solving a series of small subproblems across
the team without just reproducing the global optimization problem on each vehi-
cle. The global objective is proven to monotonically decrease over each iteration,
and the feasibility of the entire team is maintained. The algorithm was extended



to develop a cooperative form of the decentralized robust safe but knowledgeable
(DRSBK) algorithm for multi-vehicle trajectory optimization [18]. CDRSBK
achieves cooperative behaviors by enabling vehicles to sacrifice the local cost if
it leads to a global improvement [18, 20, 21].

4. Experimental demonstration of our distributed planning algorithms [21, 22] on
a new indoor UAV testbed [24, 26].

The following sections provide more detail on the main topics.

Distributed Planning: Developing consensus for a team of agents with incon-
sistent information is a core component of many decentralized planning schemes.
We recently extended the analysis of the Unbiased Kalman Consensus Algorithm
(UKCA) [9, 12], with the following key observations: (i) exchanging both the state z;
and uncertainty weights P; in each iteration enables UKCA to converge to the desired
weighted average for a very general class of communication networks; (ii) the scaling
factor introduced in UKCA is associated with the outflow,of the sending agent, which
differs from other approaches in the literature; (iii) this scaling also has the implicit
effect of essentially setting the outflows of all agents to 1, but has no effect on the
inflow. Thus the scaling does not just implicitly balance the network, and standard
convergence results do not apply. We therefore provide a proof of the convergence
of UKCA to the unbiased estimate for both static and dynamic communication net-
works [4, 9].

Many distributed task assignment algorithms (including RDTA [10, 12]) require that
agents relay information to neighbors. QOur new auction based task assignment
(ABTA) algorithm combines consensus and auction ideas to create conflict free as-
signments using limited communication without requiring relaying of information.
The basic idea of the ABTA is for each agent to act in a greedy way and choose the
best task for itself. It then communicates its value for the tasks with its neighbors
to determine if it is the best agent to be assigned to that specific task. If an agent
then determines that another agent can achieve a better value by being assigned to a
task, it discards the task and chooses the next best task. This is similar to other auc-
tion algorithms, but in ABTA the information is only exchanged between neighbors.
ABTA is proven to converge to a conflict free complete assignment for very general
communication networks. A comparison to implicit coordination shows that the per-
formance is within 7% of the best assignment, but there is a significant reduction in
the communication requirements [12].

Robust Search: We developed computationally tractable search algorithms that
account for the uncertainty in the optimization parameters [13, 14, 15]. The work is
based on Markov Chain theory and its applications to finite state, finite action, finite
horizon Markov Decision Processes (MDPs). It gives a computationally tractable so-
lution to finding the optimal policies subject to uncertainty in the initial probabilities
and the state transition matrix. The novelty in this work is the adaptation of the
Sigma Point sampling methods (SPSM) to dynamic multi-stage problems where the
probabilistic parametrization may be poor. We show that the SPSM can be used
to generate computationally economical samples of the uncertain transition matrices.



Furthermore, the probability distributions on the uncertain parameters can be main-
tained in a closed form approximation with virtually no additional computational
overhead by compactly describing them with the Dirichlet distribution.

Distributed Trajectory Optimization: We developed a new form of robust
Model Predictive Control (MPC) using constraint tightening, where the degree of
tightening is a convex function of the feedback parameters [19]. The proposed ap-
proach is shown to be able to represent a strictly larger class of feedback policies
when compared to previous algorithms. Further analytical results provide a) neces-
sary and sufficient conditions on the choice of feedback parameters for the existence
of a nonempty output constraint set; and b) a sufficient condition for the existence of
a nonempty robust invariant set. Combined with the convex parametrization, this en-
ables an off-line linear optimization to determine the feedback policy that can tolerate
much stronger disturbances while robustly satisfying the constraints.

Simulation results show that this proposed con- st
troller leads to both a larger feasible set and perfor-
mance improvements under the action of strong dis-
turbances. For example, Fig. 1 shows a set of initial — g
states from which a controlier has a feasible solu-
tion, for three controllers 2-step nil, 3-step nil,
and max-dist. In the top plot with 8 = 1.5, the N z
controllers 3-step nil and max-dist have a larger [ —
initial feasible state set compared to 2-step nil.
When the disturbance level 8 = 1.89, the controller
max-dist has a feasible region that is much larger
than controller 3-step nil, as shown in Fig. 1 (bot-
tom). The larger set allows for the system to operate

in a larger region, directly affecting the performance
of the controller [19]. Fig. 1: Set of states for which

a feasible solution exists.
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We also extended prior work to develop a coopera-

tive form of the distributed robust Model Predictive Control that is used for multi-
vehicle trajectory optimization (called CDRSBK) [20]. The overall goal is to develop
an approach that solves small subproblems but minimizes a fleet-level objective. In
this new algorithm, vehicles solve their subproblems in sequence, while simultaneously
generating feasible perturbations to the decisions of the other vehicles. In order to
avoid reproducing the global optimization, the decisions of other vehicles are parame-
terized using a much smaller number of variables than in the centralized formulation.
The resulting algorithm is shown to be robustly feasible under the action of unknown
but bounded persistent disturbances and monotonically decreases the fleet objective
while cycling through the vehicles in the fleet and over the time.

To demonstrate the algorithm, consider a scenario with two vehicles trying to reach
their own targets while avoiding obstacles and each other. Fig. 2 shows the trajecto-
ries generated by the original DRSBK and cooperative CDRSBK algorithms. Because
UAV 1 has to traverse a longer route, the best solution is for UAV 2 to “move over”.
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Fig. 2: Trajectories executed using DRSBK (left); CDRSBK (middle left); and time
history of the objective function

While both distributed algorithms maintain feasibility under the action of distur-
bances, only the CDRSBK algorithm naturally recovers this cooperative behavior.
Fig. 2 also shows the time history of the individual cost J? and the fleet cost J. Both
algorithms monotonically decrease the fleet objective, but as shown in the far right
figure, the cooperative formulation allows the individual cost to increase if it leads
to a larger improvement of the fleet cost. Between optimization 14-17, UAV 2 yields
to the vehicle with a worse cost (UAV 1), enabling a large reduction in the fleet cost
J. The average computation time for this scenario was 0.050s for DRSBK and 0.064s
for CDRSBK. These simulation results clearly demonstrate the proposed algorithm
can improve the fleet objective by temporarily sacrificing on the individual objective,
with only a minimal impact on the computation time.

Multi-vehicle Testbeds: We have developed a unique indoor multi-vehicle test
facility called RAVEN (Real-time indoor Autonomous Vehicle test ENvironment) to
study long-duration missions in a controlled environment [24, 22]. A key feature of
RAVEN is the Vicon global metrology system. By attaching reflective balls to the
vehicle's structure, the Vicon MX Camera system and Tarsus software can track and
compute the vehicle’s position and attitude information at rates up to 120 Hz, with
a 10 ms delay, and sub-mm accuracy. Just as GPS spurred the development of large-
scale UAVs, we expect this new sensing capability to have a significant impact on 3D

indoor flight, which has historically been restricted to very small volumes.

RAVEN is an excellent rapid prototyping en-
vironment for UAV research. In addition to
demonstrating advanced path planning con-
cepts (e.g., CDRSBK test flights) [21, 22| and
flying large UAV teams (see Fig. 3), it has also
been used for multi-UAV search and track us-
ing onboard vision [27, 28] (see Figs. 4-5). In
this case, the high-level mission management
system ensures that an adequate number of  Fig.3: 10 UAVs with 1 operator.
UAVs are available to search and track targets in unknown locations, while a coop-
erative algorithm was used to generate accurate estimates of the target locations by
fusing sensor data from multiple UAVs (see Fig. 5) [27].

Fig. 6 shows an example of rapid prototyping done on aggressive flight manoeuvres
using RAVEN [26]. The primary objective of this work is to design hybrid nonlinear



Fig. 4: Multi-UAV search and track Fig. 5: Persistent tracking of UGV
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Fig. 6: Autonomous aircraft hover, transition to level flight and back to hover.

controllers to execute very agile aerobatics, similar to that expected for future MAV
operations. Fig. 6 shows a sequence that illustrates the current capabilities (vertical
take-off, hover, transition to horizontal flight, tracking a tight circular path, transition
back to vertical) [25, 26]. Videos are available at http://aerobatics.mit.edu.
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Distributed Robust Receding Horizon Control
for Multivehicle Guidance
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Abstract—This paper presents a new distributed robust model
predictive control algorithm for multivehicle trajectory optimiza-
tion and demonstrates the approach with numerical simulations
and multivehicle experiments. The technique builds on the
robust-safe-but-knowledgeable (RSBK) algorithm, which is devel-
oped in this paper for the multivehicle case. RSBK uses constraint
tightening to achieve robustness to external disturbances, an
invariant set to ensure safety in the presence of changes to the
environment, and a cost-to-go function to generate an intelligent
trajectory around known obstacles. The key advantage of this
RSBK algorithm is that it enables the use of much shorter planning
horizons while still preserving the robust feasibility guarantees of
previously proposed approaches. The second contribution of this
paper is a distributed version of the RSBK algorithm, which is
more suitable for real-time execution. In the distributed RSBK
(DRSBK) algorithm, each vehicle only optimizes for its own
decisions by solving a subproblem of reduced size, which results
in shorter computation times. Furthermore, the algorithm retains
the robust feasibility guarantees of the centralized approach
while requiring that each agent only have local knowledge of the
environment and neighhor vehicles’ plans. This new approach also
facilitates the use of a significantly more general implementation
architecture for the distributed trajectory optimization, which
further decreases the delay due to computation time.

Index Terms—Cooperative control, distributed, invariant set,
multivehicle experiments, model predictive control (MPC), robust
feasibility.

1. INTRODUCTION

ODEL predictive control (MPC) or receding horizon

control (RHC) are natural techniques to approach to
trajectory optimization problems for unmanned air vehicles
(UAVs) because they can systematically handle constraints
such as vehicle dynamics, flight envelope limitations, and
no-fly zones [1]-[4]. MPC uses numerical optimization for
online replanning, and a model of the system is embedded
within the optimization to predict the future system behavior.
A key advantage is that it can operate close to the constraint
boundaries and obtain better performance than traditional ap-
proaches [5]-[7]. Recent research has focused on robust MPC,
which is robust to external disturbances or inherent discrep-
ancies between the model and the real process, and numerous
techniques have been proposed in the past decade [8]-[15].
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When using robust MPC in dynamic environments, fastonline
computation is needed in response to new information. However,
the computation required scales poorly with both the length of
the trajectories being planned and the number of vehicles to be
planned for. This paper addresses both of these scalability issues,
adopting shorter horizons for scaling with length and distributed
computation for scalability with fleet size. The first contribu-
tion of this paper is the extension of the constraint tightening
robust MPC [12], [16] to create a robust-safe-but-knowledge-
able (RSBK algorithm. This algorithm plans over only a short
horizon, terminating in a robust control invariant set that needs
not to be near the goal. A cost-fo-go function is then used that
provides a good estimate of the path beyond the planning
horizon to the goal [2]. This combination enables a much faster
computation than existing robustness methods [17], [18] that
require the target be reachable within the planning horizon,
which will require long horizons for long maneuvers.

For multivehicle control, decentralized MPC (DMPC) [19]
addresses the computational issue associated with the central-
ized optimization by breaking the optimization into smaller sub-
problems, with the rationale that solving many small problems
is faster and more scalable than solving one large problem. For
multivehicle problems, it is natural to divide the problem such
that the plan for each vehicle is computed on-board that vehicle,
i.e., such that local decisions are made locally. Besides the com-
putational advantages of DMPC, this also offers a reduction in
the amount of data that needs to be exchanged between vehicles,
and a potentially reduced level of dependency of any individual
vehicle. The challenge of decentralized control is to ensure that
distributed decision making leads to actions that are consistent
with the actions of others and satisfy the coupled constraints.
Various approaches have been investigated, including treating
the influence of other subsystems as an unknown disturbance
[20], coupling penalty functions [3], [4], [21], partial grouping
of computations [22], loitering options for safety guarantees
[23], and dynamic programming [24]. Some approaches involve
iterative negotiations between subsystems [21], [25] and apply
game theory to study convergence. Decentralization is further
complicated when disturbances act on the subsystems, making
the prediction of future behavior uncertain.

A second contribution of this paper is to develop a distributed
form of RSBK (DRSBK). The primary computational benefit of
the DRSBK algorithm over RSBK is that each vehicle only cal-
culates its own trajectory, which is obtained by solving a sub-
problem of reduced size. The algorithm creates a queueing order
of nonconflicting groups of vehicles, where each group optimizes
sequentially, while vehicles within a group solve their subprob-
lems in parallel. This does not require iteration, which is crucial

1063-6536/$25.00 © 2007 IEEE
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for a real-time implementation over a realistic communication
network. This paper also presents a generalization of the imple-
mentation architecture for widely separated teams of vehicles. In
particular, we define a local neighborhood of each vehicle to be
all other vehicles that could have a direct conflict with that ve-
hicle. By limiting the number of vehicles considered to only those
within a local region of each vehicle, the number of constraints
in each subproblem can be significantly reduced. This modifica-
tion further simplifies the DRSBK computation, but although the
plans are only communicated locally, DRSBK is shown to main-
tain the robust feasibility of the entire fleet. This architecture gen-
eralizes the rigid implementation approaches of [18], [23] to en-
able some of the vehicles to compute their plans simultaneously,
which can significantly reduce the delay incurred.

This paper is organized as follows. Following the problem
setup in Section II, Section III presents the RSBK algorithm.
Section IV extends the RSBK algorithm to the distributed com-
putation using only local information. Section V shows several
simulation results and Section VI shows experimental results on
the hardware testbed.

II. PROBLEM STATEMENT

The problem of interest has the overall goal of reaching the
target while robustly maintaining feasibiliry. In this paper,
P, ¢, 7 that are used as an index or superscript denote the vehicle
number, subscript k denotes the current time step, and subscript
j denotes the prediction step. There are total of n vehicles whose
dynamics are decoupled and are described by an LTI model

2y, = A2 + BPl + M)

forp = 1,...,n, where &}, is the state vector, u} is the input
vector, and wﬁ is the disturbance vector for the pth vehicle. The
disturbances w}, are unknown but are assumed to lie in known
bounded sets

wl € WP, )

The environment has obstacles to be avoided and the vehicles
have flight envelope limitations. The general output sets VP cap-
ture these local constraints of each vehiclep = 1,...,n

CP? 4 DPul 2 o € JP. 3)

Vehicles are coupled through the constraints and a further set of
constraints ¢ = 1,...,n, are applied to the sum of the outputs
from each vehicle

Ve : z’;‘c'——E’:Ii, Vp=1,...,n
Yk ez (4)
p=1

where z}, _ denotes p’s variable that is coupled with other ve-
hicles® variables. For pair-wise collision avoidance constraints,
each constraint ¢ has only two nonzero matrices E? and E?, and
enforces a minimum separation between that pair of vehicles

lirk —rill > 2d 5

where rz is a position of the vehicle p, and 2d is the minimum
separation distance. Note that each set Z. is nonconvex in this
case. Finally, the objective of the trajectory optimization is to
navigate the vehicles to their assigned targets, and the objective
function is the sum of individual costs

o2, € X2 ©
n NP-1

T=3 5" r(ahu}) 7
p=1 k=0

where N? is the time of arrival at vehicle p’s target X% and is a
variable to be minimized, and [? is a staged cost of vehicle p.

III. ROBUST SAFE BUT KNOWLEDGEABLE ALGORITHM

This section presents a RSBK algorithm [26]. When applied
to multi-vehicle control, this algorithm solves a centralized
problem, i.e., solving for the plans of all vehicles p = 1,...,n
in a single optimization. Section IV discusses how this com-
putation can be separated into a sequence of smaller problems
and distributed across the vehicles in the team.

A. Algorithm Description

Solving a single optimization (1)~(7) is not tractable when the
vehicle flies through complex environment to a distant target,
because the complexity of the optimization grows rapidly with
the number of steps N? required to reach the target. Further-
more, the situational awareness can change as the vehicle flies
and there could be significant uncertainties in the far future. It is
inefficient to devote considerable computational effort to plans
for the far future, since these are likely to be revised in the light
of future learning.

The RSBK algorithm does not require the target arrival con-
straint (6) be satisfied in the planning horizon, allowing the con-
troller to use a short planning horizon. A cost-to-go function is
used to provide a good estimate of the remainder of the path
to the target, even in a complicated environment [2]. In order
to maintain safety [27] of the vehicle under the changes in the
environment, the trajectory is required to terminate in a robust
control invariant set. However, this set need not be at or around
the target, as is common in other MPC methods [8], [9], [18].
More detailed explanation is given later in this subsection.

In this paper, the prediction of a value at time (k + 7) made at
time k is denoted by the subscript (k + j | k). The online MPC
optimization develops the control inputs for a short horizon of
N steps. The optimization P(z;) at time k is defined as

n N-1
T = nin Z i ("ZH Lo Ty 5| k) +f7 (ILNM)
st =t =0
(8)
subjecttoVp=1,....n,andVj =0,....N ~ 1
T =z )]
Ttk = AT+ B (10)
Vo p =C2l  + DUl € VY (n
Zoike = ERTLL 0y (12)
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Zzzﬂlk,cezj,c, Ve=1,...,n. (13)
p=1
z£+N|k € (14)
Qp = RL ~ Ly WP (15)
vzP € RS

APgP 4 BPRP(zP) 4+ LY, _jwP € RY, Vw? € WP

C?z? + DPkP(xP) € IR _,
= Ve= 1,...,nc0: Z:zl Efz?P € Zn_1.

Y(z',...,z") e {Qf x...x Q¢ }.
(16)

The states x}, in (9) are the measured states of vehicle p. The
decision variables are the control inputs «” , and the terminal
invariant set QF that ensures the safety of the vehicle beyond
the planning horizon. Note that predictions (10) are made using
only the nominal system model, with no disturbance. In order
to guarantee robustness against disturbances w, the sets ,)Jf are
constructed by tightening the original set ) using a linear con-
troller K ;-’ that rejects the disturbance [17]

§=X7, V5, =Y~ (CP+DPKE)LEWP Vi~ (17)
where the operator ~ denotes the Pontryagin difference that has
the property [28]

ac(A~B), beB=a+bec A

and L;’ is a state transition matrix

Ly=1, Li, ,=(A"+BPKS)LE VYj=. (1)

f]
The notation V5~ implies Vj = 0,...,N — 2, and Vj im-
pliesj = 0,..., N — 1. Equations (12) and (13) represent the
inter-vehicle constraints such as collision avoidance, and more
details on the implementation are found in Appendix B. Similar
tightening is performed on the coupling constraint sets in (13),
allowing uncertainty margin for all subsystems within each con-
straint (Ve = 1,...,n,)

Zitre=Zjc~ (ELLIWL @ -~ @ ETLTW,)
ZO,(: = Zc

\7B
19

where the operator & denotes the Minkowski summation [28].
Unlike other robust MPC approaches, the constraint tightening
approach does not increase the complexity of the problem and
is well suited for real-time applications. Another advantage of
this approach is that the optimization considers the entire range
of vehicle dynamics allowed by the constraints (11)-(13).

The set Q% in (14) is called a safety set, defined by (15). The
set ’Rﬁ is a robust control invariant admissible set [29] that has
a property (16). The property states that once the vehicle enters
the set R%, the vehicle can remain safe indefinitely, satisfying
all the constraints using a predetermined terminal control law
kP (z?). The vehicle is safe also against any changes in the en-
vironment that occur beyond this safety set. This terminal set QF
moves with the vehicle towards the target and therefore a deci-
sion variable in the online optimization, as indicated in (8). The
RSBK algorithm parameterizes the invariant set, and by using

Path consistent with
discretized dynamics
Path associated with
line of sight vector
Path associated with

cost to go

Loiter/
circle',

Xy

" °
Execution®
Horizon

Planning
Horizon

Fig. 1. Representation of the cost-to-go function showing the three levels of
resolution used to approximate a complete path to the goal.

nilpotent candidate controllers, which gives L%, _; = 0, it can
solve for a simple nominal control invariant admissible set [16].
One simple invariant set for fixed-wing aircraft is a loiter circle,
or for rotorcraft, any point with zero velocity is invariant [27].
Detailed examples are given in Section V. Note that vehicle ¢’s
safety set Qf can overlap with vehicle p’s path to its safety set
Q% without any issues. This is because by the time g reaches Qf ,

d the nortion that overlaps with 04
nin -

nhac alreadyv avacn
wial Ovenaps wiian

vehicle p has already executed the portio

The function f7(z} | ) in (8) represents the cost-to-go be-
yond the planning horizon and is associated with the terminal
states of the planned trajectory. The function is designed to pro-
vide a reasonable estimate of the length of feasible paths to the
goal using a sparse set of grid points, such as obstacle corners [2]
shown in Fig. 1 and vertices of other vehicles’ safety set. This
cost-to-go is based on the current situation awareness of the en-
vironment, but because the cost only needs to be evaluated at a
small number of points and it uses a coarse model of the aircraft
dynamics, it can be updated rapidly as the environment changes
[30]. This approach avoids the potential problems of simple ter-
minal penalties, such as the distance to the goal, which are not
cognizant of the known obstacles in the environment, and thus
can lead to the aircraft becoming trapped behind them.

The implementation of this cost-to-go function has two main
components: cost map generation and cost point selection. The
cost map generation is based on the observation that the opti-
mized paths (i.e., minimum distance) tend to follow the edges
and corners of the obstacles. Thus, a shortest path algorithm is
applied to a graph-based representation of the environment to
estimate the approximate cost c?(Tcorner) t0 fly from each ob-
stacle corner reorner to the target of vehicle p. Then, only the
pairs of corner locations and costs are stored within the cost
map. The receding horizon optimization chooses the best corner
r%;, that is visible from plan’s terminal position 7% | of the
vehicle p, so that the cost-to-go function is

fr (xi+N|k) = ”r:+N|k - Tl , T e (rlis) -

Note that the second term gives an estimate of the cost from
the selected point to the goal along a coilision free path. This
cost-to-go function enables the planner to use the environmental

(20)
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information beyond the detailed plan, leading to a knowledge-
able trajectory. The discrete decision associated with the corner
selection is implemented using mixed integer linear program-
ming (MILP) [2]. The resuits presented in this paper uses a 2-D
version of the cost-to-go calculation, but this has been extended
to 3-D in [31] and to account for the typical turning behavior of
a UAV in [32].

Given these main components, the overall RSBK algorithm is
summarized as follows. From the optimal solution at time &, the
first control input ui*l . for each vehicle is applied to the system
(1). At the next time k + 1, the states of each vehicle 7, , are
measured, and the optimization is repeated as follows.

1) Compute the following and store.

* The constraint sets J¥ through (17) and (18).
* A cost map Teorner, ¢ (Feorner) that can be used to eval-
uate the cost-to-go function f7(-).

2) Attime k, measure vehicle states zﬁ , and formulate a MILP
problem using the stored values from Step 1). Then, solve
the optimization problem P(x;) shown with (8)—~(14) and
(20).

3) Apply control uf, = ui'i . from the optimal sequence to the
system (1).

4) Increment k. If the knowledge of the environment changes,
go to Step 1); Otherwise, go to Step 2).

B. Properties

Theorem 3.1 (Robust Feasibility): The RSBK algorithm
maintains feasibility of the optimization while satisfying all of
the constraints under the action of a bounded disturbance (2), if
the first optimization is feasible.

Proof: 1t can be shown (see Appendix A) that feasibility at
time k ensures that a particular candidate solution

Wpjerlhrr = Vg e T KGR, VT @D
Wy vt k1 = Yhpipn s+ L5WE VI (22)
iy N (k1 = K (f’-z+N|k+1) (23)
Uy Ny (k1P = AP jk+1 T Bz k1 24

is feasible at time k+ 1, and hence the optimization at time k+1
must be feasible. ]

Remark 1: Inorder to recursively prove robust feasibility, the
algorithm requires the existence of an initial feasible solution.
Because the algorithm uses a short planning horizon and does
not require the vehicles reach the goal in the first plan, it is typ-
ically very easy to find an initial feasible solution, as will be
shown in Experimental Results, Section VI. One such initial-
ization is a simple loiter pattern, assuming the vehicles are far
enough apart compared to the diameter of the loiter circle. This
initialization is much simpler than that required in previous ro-
bust multivehicle MPC algorithms [16]. This feature will also
be exploited in the distributed form of the algorithm, where ini-
tialization can be a significant challenge.

Remark 2: In contrast to the nominal safety approach [27]
that assumes no disturbance (i.e., WP = (), the algorithm pre-
sented here never fails to find a feasible solution under the ac-
tion of bounded disturbances. Furthermore, the number of con-
trol variables is the same as the nominal algorithm. By over-

bounding the Pontryagin difference operation in (15), (17), and
(19), the algorithm will have the same number of constraints
[18].

Remark 3: The RSBK algorithm is an anytime algorithm,
that is, the optimization can be stopped at anytime. In such a
case, however, a feasible solution is always available. This fol-
lows because a candidate feasible solution can be always con-
structed from the previous feasible (not necessarily optimal) so-
lution. As shown in Appendix A, the calculation of a candidate
solution is simple and involves 1) shifting the previous plan by
one time step, 2) adding a disturbance feedback sequence, and
3) appending a terminal control input using &P at the terminal
step of the plan.

IV. DISTRIBUTED RSBK ALGORITHM

This section presents a distributed version of the RSBK al-
gorithm. In this approach, each vehicle solves a reduced sub-
problem to determine its control inputs. These optimizations are
solved in sequence and the distribution is achieved by having
each vehicle exchange its plan information with the other vehi-
cles. A key element of this work is that the vehicles must only
exchange information with its neighbors, enabling the local op-
timization to be based on local information [23]. This is im-
portant because it reduces the communication requirements and
enables the groups to replan faster.

A. Algorithm Description

The basic idea is to include only the vehicles that could have
direct conflicts with the vehicle that is planning. Fig. 2 shows
an example with three aircraft. Any plan of the vehicle » would
not have conflict with p’s plan because they are far apart. On the
other hand, the vehicle g could have a conflict with p if both p
and g generate their plans independently and move towards each
other. Therefore, p’s optimization must include the intention of
g, but the vehicle r could be disregarded.

Before presenting the algorithm, several aspects of the nota-
tion are defined. First, define vehicle p’s neighbor Z7 as an or-
dered set of vehicles whose plans made at time k could have di-
rect conflicts with p’s plan made at time k. For the multivehicle
collision avoidance problem, the neighborhood of the vehicle p
is defined as all the vehicles within distance 2D from vehicle
p’s position, where D is the maximum plan length with some
margin and is given by

N
D=3 (vmax~B)At +d+ay1+20 (25
k=0

with At being the sampling time of the discrete time system,
d being the size of the vehicle, p being the radius of the loiter
circle, an ; being the margin included for robustness [ 18], and
Bk being the constraint tightening margin for the velocity, whose
analytical calculations are given later in (40). The dashed line in
Fig. 2 shows the boundary of p’s neighborhood. The communi-
cation range of the vehicles is assumed to be larger than 2D.
All obstacles within range D from the vehicle are assumed to
be known. Note that the neighbor set is a function of time k, be-
cause the relative position of the vehicles will change over time.



KUWATA et al.: DISTRIBUTED ROBUST RECEDING HORIZON CONTROL FOR MULTIVEHICLE GUIDANCE 631

Planning
horizon
X}
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q
graph X Vehicle p's
neighbor range

Fig. 2. Neighborhood of each vehicle is shown by the dashed lines. Each plan
terminates in a safety circle.

The set Z, also determines the order in which the vehicles
calculate their new plans sequentially, although Section IV-E
modifies the assumption on this strict ordering. Let pre(q) de-
note the vehicle ordered prior to the vehicle g, and pre(q) de-
note the vehicle ordered after ¢. The first and the last element of
this set is expressed as first(77) and pre(77), respectively.
With the definition of Z}, we know a priori that for any two ve-
hicles p and ¢ with ¢ ¢ I} (and hence p ¢ I}), the coupling
avoidance constraints are satisfied for all steps with the plans of
the two vehicles. Hence, even if the subproblem for the vehicle
p includes only the plans of its neighbors, all of the coupling
avoidance constraints will be satisfied.

The result of this analysis is that only a subset of all m cou-
pling constraints need to be considered in each subproblem. De-
fineC? C {1,...,n.} as the set of coupling constraints to be in-
cluded in subproblem p at time k. Then, CY = {c € 1,...,n.:
Jq € I¥, [E? E?] # 0}. This excludes two kinds of constraint
trrelevant to p: those that couple p to the vehicles outside its
neighborhood and those that do not involve p at all, i.e., with
E? =0

Let Gi. denote a vehicle graph whose node is a vehicle and
edge connects two nodes if the corresponding vehicles are
neighbors. If G, is a disconnected graph, then Gy is divided
into a set of connected subgraphs. The information of the
neighbor sets Z} is shared by the vehicles in the connected
graph (or subgraph if G, is not connected), so that the vehicles
in the connected graph have the consistent information on the
planning order. This can be done using only the inter-vehicle
communication. Note that the vehicles that belong to different
connected graphs do not need to exchange information because
there will be no conflict among them.

B. Algorithm

At time k, the pth vehicle generates its own control inputs
u” | 1 by solving the following optimization subproblem PP (=} ):

N-1

Y (B 1o 1) 7 () @6)

Jj=0

min
uwh(- | k),QF

subjectto V5 : Eq.(9)-(12),(14)

Zevilke T Zirjike € Bl VEECY @7
APzP + BPrP(zP) € Q)
CPz?P + DPkP(zP) € IR
» » N-~-1
Vo€ QP \Veel: Speyy Flat € Zy 1 P

V(zPo,...,zPr)e{Q° x -- x Q).

The term 22 +j |k is @ summation of the outputs from the
neighbor vehicles and is constant in this local optimization.
The term has two components V3, Ve € Cf,

-~ * *
Zz+j [k ™ Z Ziﬂ [k Z Ziﬂ- | k~1,¢"
) g€z?, e 7?,
ord()<ord(s) ord(q)>ord(p)
29

The first term is the summation over the vehicles that have al-
ready planned at time k. The second term is for the vehicles
that have not planned at time k, so that the prediction made at
(k — 1) is used. This prediction comes directly from (12) in the
optimization P7(z} _, ). The original coupling constraint sets Z.
are modified in the following manner, dividing the tightening
process from (19) into intermediate stages for each vehicle:
=2, (302)
ZPTOW ~z9  BILIWIVS, q€TL, q#po (30b)
20 = 20 ~ B LEW,,, Vi (30c)
with pp = first(Z}) and p, = last(Z}). (30b) tightens the
constraints from the vehicle ¢ to pre(g). This represents that
the vehicle pre(q) saves some margin for the vehicle g so that
¢ can use it to reject the disturbances WY. (30c) tightens the
constraints from the prediction step j to (j + 1). This represents
that the optimization at time k for vehicle p,, saves some margin
so that the optimization at time (k + 1) for vehicle pg can use it
to also reject the disturbances.

Note that each vehicle uses a nilpotent controller K? that
gives L%, _, = 0, and (15) is not included. For the vehicles that
have already planned at time k, the latest solution Qf is used.
For the vehicles that have not planned Vq € {next(p),...,pn},
the invariant set constructed at the previous step is used, i.e.,

— q

Isl"he fu{cl ]5RSBK algorithm is as follows.

1) Find a feasible solution of the DRSBK optimization
starting from the current states (see Remark 4).

2) Setk = 1.

3) For each vehicle p, update the neighbor set I .

4) For each vehicle p, in a predetermined order (e.g.,
1,...,n), do the following.
a) Gather, by communication, the latest plans zf’rk‘c or
zf’rk_l,c from its neighbors g € I}.
b) Measure vehicle states z7,.
c) Construct a cost map Teorner; ¢ (Teorner )-
d) Solve subproblem PP(z}).

5) Apply control ui'l . to each vehicle p.

6) Incrementk := k + 1 and go to 3.

Note that this algorithm is also a generalization of the two pre-
viously published distributed MPC algorithms [18], [23], in that
it includes both robustness and a short plan that does not neces-
sarily reach the target.
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The steps 1, 3, and 4a—c are implemented in MATLAB. Be-
fore solving each subproblem 4d, MATLAB forms the MILP
constraints using both the static parameters such as vehicle dy-
namics limit, target location, and constraint tightening margin,
and the dynamically updated parameters such as current vehicle
states, obstacle boundaries, and other vehicles’ plans. More de-
tails on the MILP implementation are shown in Appendix B,
Then, the MILP solver CPLEX is invoked in step 4d. The opti-
mized control states and inputs are extracted from CPLEX into
MATLAB and is sent to the vehicle in step 5. Note that in the
hardware experiment Section VI, MATLAB receives the mea-
sured states from the vehicle in step 4b.

C. Robust Feasibility

Even though each subproblem only uses local information,
the robust feasibility of the entire fleet can be proven using an
approach that parallels [17].

Theorem 4.1: If feasible solutions to all subproblems
P!(z1),...,P"(x}) can be found at time k, then the subprob-
lems at the future times ¢ > k are feasible under the action of
disturbances.

Proof: The proof is based on a recursion and similar to the
proof of Theorem 3.1 in Appendix A. Without loss of generality,
the planning order is assumed tobe 1,2, ..., n.

1) Assume all the subproblems P?(z%) have a feasible solu-

+ t &1 L
ton at umne <.

2) Then, it can be shown that a feasible solution exists to the
first subproblem P* () at time k + 1 for all distur-
bances w} acting on the vehicle 1 despite the change in
the neighbor set 7} +1- This is done by showing that the
following candidate solution is feasible

g1 | k41 = Yotk T KiLiw}® Vi~ 3hH
Frpjr1l k1 = Torjrk T Ljwh Vi (32)

oy ki = K (filc+1v|k+1) (33)
Tiang ki = AN k1 + Blign i (39

3) Under the assumption in Step 1, it can be shown
that given any solution to the problem PP(z} ) for
p € {1,...,n — 1}, the next subproblem PP*!(z}*])
is feasible, by showing the feasibility of a candidate
sequence. Similar to (31)-(34) in Step 2, the candidate
solution is constructed by shifting the previous plan for
vehicle p + 1, assumed known in Step 1, by one time step
and adding a perturbation sequence using the predeter-
mined controller KP*1.

Therefore, at k + 1, all subproblems P'(z},,),...,P"(z},,)
are feasible. =
D. Remarks

Remark 4: Simple Initialization: Initializing this algorithm
requires the other vehicles’ previous solution, as shown in (28)
and (29). However, a simple initialization technique such as
loiter circle can be used, as discussed in Remark | of the RSBK
algorithm.

Remark 5: Scalability: If each subproblem includes the in-
teractions with all the other vehicles, as in [18], the number of

Fig. 3. Output of Brelaz’s heuristic algorithm for vertex coloring. Each node
represents a vehicle, while each line connecting two nodes represents that they
are neighborhood. The number is a group label for the vehicle and vehicles with
the same group label can compute simultaneously.

constraints grows rapidly with the size of the fleet, which would
increase the problem complexity. The algorithm presented here
only requires the information about its neighbors, resulting in a
more scalable approach. Furthermore, each vehicle only needs
the information from its neighbors, so that the algorithm re-
quires much less communication bandwidth.

E. Simultaneous Computation

This section removes the assumption on the strict ordering
and enables simultaneous computation among vehicles.

Theorem 4.2: Two vehicles p and ¢ can generate trajectories
simultaneously without causing infeasibility in the algorithm if
p ¢ I9 (and hence ¢ ¢ ZP).

Proof: By the definition of neighbor 7% an
for p and ¢ have no conflict. Given an arbitrary vehicle r(#
D, q), both optimizations by p and g ensure that the same can-
didate plan similar to (31)—(34) for each vehicle r is feasible.
Thus, when p and q calculate simultaneously, the vehicle r has
a feasible solution at the next optimization. n

By applying this theorem to pairs of vehicles in the fleet, it can
be shown that more than two vehicles can perform optimization
simultaneously. The vehicles that compute simultaneously are
grouped together, and the number of vehicles that compute si-
multaneously is to be maximized. This grouping problem is cast
as a vertex coloring problem on the vehicle graph G, where
each vertex represents a vehicle and vertices are connected if
they are neighbors. The goal is to color all the vertices with a
minimum number of colors while using different colors for ad-
jacent vertices. Brelaz’s heuristic algorithm [33] is used here
because it provides good solutions very rapidly. Vehicles of the
same color are in one group and can compute their solutions si-
multaneously.

Fig. 3 shows a simple example where Brelaz’s algorithm is
applied to a graph of ten vehicles. Note that in order to color the
vehicles, the location of all the vehicles in the connected graph
must be known. A central ground station can be introduced to
run the grouping algorithm and determine the planning order.
Alternatively, the vehicles can obtain this information by com-
municating only locally through neighbors. Then, Steps 3) and
4) of the DRSBK algorithm in Section IV-B are modified to the
following.

3) Ground station receives vehicle positions r}, runs the
grouping algorithm, and determines the planning order.
Each vehicle updates the neighbor set 7} .

4) For each group, do the following simultaneously for all
vehicles p’s in the group.

3 Tq by Voo
a L9, the pians
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V. SIMULATION RESULTS

A. Vehicle Model

A point-mass dynamics model is used to approximate trans-
lational dynamics of rotorcraft and fixed-wing aircraft

[TZH] = A [ﬁ] + BPa} + )

k+1 k
. I, Atl,
P _
with AP = [02 I, ]
B — [LAZL[Z
At

where r?,vP, and a? are the position, the velocity, and the ac-
celeration vector, respectively. Matrices I and Q5 express an
identity matrix and a zero matrix of size 2, respectively. The dis-
turbance w}, enters through the input acceleration and
wh € W={w|w=Bn,n € R?,||n|lc < Wax}-

(35)

The local constraints include the obstacle avoidance, the max-
imum/minimum speed, and the maximum input constraints

h¢o
Umin S ”vinz S VUmax
||“i||2 S Gmax
where O C R?2 expresses the no-fly zones, and Upnmin, Vmax,
Gmax are the minimum speed, maximum speed, and maximum
acceleration of the vehicle. A two-step nilpotent controller K*
for this system is K? = [—(1)/(A#?)1y, —(3)/(2At) ], which
enables the use of nominal invariant set as a safety set. Per-

forming constraint tightening (17) gives the following constraint
set [18]:

Tz+j|k¢0®aj8

VUmin + ﬁ] < |,vz+11k||2 < VUmax — /B]

(36)
(37

”az-l—j|k||2 < Gmax = V5 (38)
where constraint contraction parameters «, 3, and -y are defined
in (40) in Appendix B. The set BB represents a 2-D unit box, i.e.,
B = {z € R?|||z|l < 1}. Note that (36) expands the no-fly
zones to guarantee robust feasibility. The cost map calculation is
based on the expanded obstacles O @ an_1 B. The inter-vehicle
avoidance constraints in p’s optimization are written for each
q €I} as

|~

+ilk T riljlk” >2d+ 2a;.  if ord(q) < ord(p)

— 7* . .
”"zﬂu rk+j|k_1“ > 2d + o + ajta,

if ord(q) > oxd(p)

where T?I*- are sent from p’s neighbors. The terminal safety sets
Q} must not overlap with each other, as shown in (28), so that
the sets Qf (Vg # p) are treated as no-fly zones after time step
k+ N — 1 in the optimization P? (2% ). These nonconvex avoid-
ance constraints are implemented using MILP. More details are
found in Appendix B.

B. Long Trajectory Generation for Single Vehicle

The first example demonstrates that the RSBK algorithm
for a single vehicle can design a very long trajectory without
computational issues. In this example, the rotorcraft is used,
which does not have the minimum speed constraint. The ve-
hicle parameters are: At = 2.6 s, N = 6, max = 0.5 m/s, and
@max = 0.17 m/s?. The invariance of the set Qy is guaranteed
by imposing the following hovering safety constraints in the
optimization

Zr4N+1 |k = TE4N |k
TNk E O®an_1B.

The second equation ensures that the hovering location is col-
lision free. The target region is far from the initial vehicle, and
to solve this problem by planning all the way to the goal would
require a horizon of at least 30 steps. This would require im-
practical computational effort for real-time applications and, as
discussed earlier, would be inefficient due to the uncertainty in
the far future.

Fig. 4 shows trajectories generated under three different dis-
turbance levels wpax = 0,0.1amax, 0.2amax. In all cases, the
RSBK algorithm guided the vehicle to the target, and the av-
erage computation time was less than 0.2 s. When the distur-

bance level is 10% of the control authority, the trﬂiprtr\ry 1S sim-

15 AU 70 UL T VOO QUUY, CUGULIOLY 15 Sade

ilar to the one with no disturbance. However, when the distur-
bance level is raised to 20% of the control authority, the vehicle
takes a different route because the passage in the middle of the
figure used by the other plans is too narrow to pass through ro-
bustly. A cost-to-go calculation based on the robustified envi-
ronment O & an_18 does not allow the vehicle to enter the
narrow passage where the vehicle could violate the collision
avoidance constraints due to a strong disturbance.

Note that the vehicle moves slowly when the disturbance is
strong, as it is expected intuitively. Because more margin must
be saved to reject a stronger disturbance, less control authority
can be used when generating the trajectory. The hovering state
used as a terminal invariant set requires the vehicle be able to
stop at the end of each plan using the small control authority
available in the prediction. Table I summarizes this result. The
average speed becomes significantly smaller when the distur-
bance level is increased from 10% to 20%. The number of steps
it takes to reach the target set is significantly longer with the 20%
disturbance level, partly because of the longer route it chooses,
but mainly due to the reduced speed.

C. Mulri-UAV Scenarios

The second set of simulations used homogeneous fixed-wing
UAVs. The maneuver limit of the vehicle is given by vin =
18 M/S, Umax = 24 MVS, @max = 3.84 m/s?. The disturbance mag-
nitude Wy is 5% of the control authority a,p,,x. The planning
horizon length N is 5. Fixed-wing UAVs have minimum speed
limit, and a safety loitering circle is used as a terminal invariant
set [23]. For simplicity, in this section, the simultaneous com-
putation is implemented as a sequential computation on a single
computer but in the same simulation time step. Section VI shows
the real-time experimental results using multiple computers.
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Fig. 4. Trajectories generated by the RSBK algorithm. The vehicle starts at the
right, and the goal is marked with o. The obstacles are expanded in the RSBK
calculation to account for the avoidance check imposed only at discrete time
steps. (a) No disturbance. (b) Disturbance level 10%. (c) Disturbance level 20%.

TABLE
PERFORMANCE COMPARISON FOR THREE DISTURBANCE LEVELS

Disturbance | Average | Steps
level spee
0% 0.50 m/s 26
10 % 0.44 m/s 30
20 % 0.28 m/s 48

The DRSBK algorithm was tested in the following two sce-
narios. The first scenario uses four vehicles with vehicle avoid-
ance constraints. Fig. 5(a) shows the entire trajectories. Goals
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Fig. 5. Four vehicle scenario. The goal points are shown with O with the cor-
responding vehicle index. (a) Trajectories. (b) Snapshot at time 5. Note that
squares containing safety circles do not overlap with each other. (c) Snapshot at
time 8, showing the successful avoidance maneuvers.

are marked with [ together with the corresponding vehicle in-
dices. Fig. 5(b) shows the plans made at time & = 5. The rec-
tangle in dashed lines shows a safety region where the safety
circle is contained and the other vehicles cannot enter after time
k + N. Note that the plan of the vehicle 4 (marked with a star)
aims for the corner (marked with a o) of this rectangle of the
vehicle 1 because this comer is in the cost map. As shown in
Fig. 5(b) and (c), it is acceptabie for the plan of one vehicle to
pass through the safety region for another. The terminal set (28)
only requires that the safety regions do not overlap each other.
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Fig. 6. Ten vehicle scenario with four obstacles. (a) Trajectories of all the ve-
hicles. (b) Graph representation of neighborhood at time 14. (¢) Time history of
the vehicle grouping.

The second scenario is much more complicated and involves
ten vehicles and four obstacles. Fig. 6(a) shows the trajectories
of all ten vehicles. Although computation was done on one pro-
cessor in this section, the grouping algorithm was included to
investigate the potential for speed-up by simultaneous compu-
tation. The hardware experiments presented in Section VI use
one processor for each vehicle. Fig. 6(b) shows a snapshot of
the vehicle locations (marked with a o) at time k& = 14. The
neighbors are connected by the lines and each vehicle is labeled
with a color/group number. Note that no two vehicles connected

TABLE II
AVERAGE COMPUTATION TIME (s) OF EACH SUBPROBLEM

Scenario Cost map Optimization
calculation (MILP)
4 veh 0.04 0.21
10 veh (local comm.) 0.21 0.25
10 veh (full comm.) 0.21 0.37

to each other have the same group number. The vehicles in the
same group can simultaneously solve their optimization without
any conflict in their trajectories. Fig. 6(c) shows the time history
of the number of colors required for grouping the vehicles. The
number of groups is low when the vehicles are far apart, but as
might be expected, this increases to six in the middle of the mis-
sion when the vehicles are in close proximity.

Table II shows the average computation time for these sce-
narios. The cost map calculation was done in MATLAB, and the
MILP optimization was solved using CPLEX 9.0 on a Pentium
IV 3.2-GHz machine with 1 GB of RAM. The computation time
of the cost map calculation grows with the number of vehicles
because a higher number of loiter circles means that more ob-
stacles must be considered. In order to demonstrate the effect
of using only the local information, the ten-vehicle scenario is
tested also with a case where each vehicle includes all other
vehicles as neighbors with full communication. The last two
rows of Table II illustrate that DRSBK with local communica-
tion solves the problem much faster. The output of the grouping
algorithm is used to enable simultaneous computation, and the
number of groups that must compute sequentially is ten in the
full communication case, as opposed to six in the local commu-
nication case. This indicates the local communication architec-
ture reduces the fleet computation time further by 40% in this
scenario.

V1. EXPERIMENTAL RESULTS

This section presents experimental results of the DRSBK al-
gorithm on the multivehicle testbed. The hardware demonstra-
tions introduce realistic features such as computation and com-
munication time delays and prediction errors that naturally arise
from the various sources of uncertainty in the system, including
the tracking errors from the low-level waypoint follower and
modeling errors of the vehicle dynamics. These implementation
challenges must be addressed by the algorithm in order to suc-
cessfully generate trajectories online.

A. Testbed Setup

Fig. 7 shows the testbed setup with the indoor positioning
system from ArcSecond Constellation 3-D-i and Pioneer 3-AT
from ActivMedia Robotics. In order to demonstrate the online
distributed computation amongst the vehicles in the fleet, each
rover has two laptops, as shown in Fig. 7(a). A small “control”
laptop performs the navigation and low-level vehicle control
tasks, and a 2.4-GHz “planning” laptop performs the DRSBK
computation using a combination of MATLAB and CPLEX.

The control laptop runs an estimator for the position and the
velocity estimate of the vehicle. For practical implementation,
instead of applying the acceleration command u* as in Algo-
rithm step 5, the onboard planner sends the optimized trajectory
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Fig. 7. Multirover testbed. (a) Photos of the hardware. (b) Testbed architecture.
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Fig. 8. Timing of the DRSBK algorithm on the testbed.

to the control laptop, which generates wheel speed commands
for the rover. A nonlinear guidance law [34] is used to imple-
ment a trajectory tracking controller, which runs at a faster rate
than the DRSBK controller. This represents an apportionment
of uncertainty in the problem, with the low-level handling fast
dynamics and the high-level handling uncertainty in the envi-
ronment, collision avoidance, and residual tracking errors. The
ground station laptop runs a grouping algorithm at each time
step, but all DRSBK calculations are done onboard, as shown
in Fig. 8. Each planning laptop communicates its local solu-
tion with its neighbors using the 802.11a wireless LAN. For this
testbed, the inter-vehicle communication is facilitated using an
access point connected through an Ethernet cable to the ground
station laptop.

Fig. 8 shows the timing of the experimental setup. This ex-
ample has three vehicles in two groups where the vehicles 1 and
2 compute simuitaneously. The control input of each vehicle is
implemented using fixed discrete time steps. The planner takes
a measurement (I) and propagates forward the measured states
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using the nominal model to predict the initial states z of the
plan. This propagation compensates for the system delay that
results from the computation time tcomp, the communication
delay tcomm, and the actuation delay fgelay. It then computes
the optimal control input (II) and waits until the controi update
time (IIT). The step size At between time step k and k + 1 was
2.8 s for two-rover cases and 3.5 s for three-rover cases.

A typical experimental run starts by commanding the vehicles
to drive straight in the initial heading direction. After 1.5 s, the
first vehicle takes its measurement and the DRSBK loop starts.
For other vehicles that have not made any plans, loiter circles
starting from their current states are used as their initial feasible
plan, as mentioned in Remark 4. This demonstrates the online
initialization capability of this algorithm.

Given the applications of interest are multi-UAV coordination
problems, the rovers have been modified to emulate the motion
of a UAV in 2-D. In particular, the vehicles are constrained to
a maximum speed vnax = 0.25 m/s, a minimum speed vy, =
0.044 m/s, and a minimum turning radius r;, = 0.9 m. The
vehicle size is d = 0.25 m. The planning horizon length is three
steps. The disturbance w?, is assumed to enter into position and
velocity separately

wh € W= {w e R*|||[I2,02]w|2 < w,,.,
(02, L]w|l2 < w,y,, }-

Extensive testing of the vehicle on different types of flooring
indicated that the prediction errors due to the uncertain vehicle
dynamics, navigation errors and external disturbances are ap-
proximately w,_.. = 15 cmand w,_ . =5 cm/s. Due to the
tightened constraints, the speed is constrained to be 0.14 m/s
< v < 0.15 m/s after N = 3 steps.

B. Results

Scenarios are constructed to highlight several features of
DRSBK algorithm: on-board laptops generate trajectories on-
line, which shows the computational advantages for real-time
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Fig. 9. Two vehicle experiment results. The arrows show the initial heading directions of the vehicles. The goals are marked with a T. (a) Run #1. (b) Run #2.

(c) Run #3. (d) Run #4.

applications; the vehicles are required to maneuver in a con-
strained environment, which demonstrates the robust feasibility
under the action of disturbances; plans based on distributed com-
putation can satisfy the coupling collision avoidance constraints.

Test 1: The first experiments were designed to test the ob-
stacle and vehicle avoidance using two rovers. During the first
few steps in each run, the separation between the two vehicles
was more than 2-D = 6.34 m, and the onboard computers op-
timize trajectories simultaneously. However, as they move to-
wards each other, the planning horizons overlap, and they must
compute the solutions sequentially. For the purposes of these
demonstration, the experiment is terminated once the vehicle
avoidance and obstacle avoidance maneuvers are completed.
Fig. 9 shows four runs performed on this testbed. DRSBK algo-
rithm maintained feasibility under the action of the disturbances,
and all runs show the robust vehicle avoidance and obstacle
avoidance based on the online distributed trajectory generation.

Test 2: The second set of runs examines vehicle avoidance
maneuvers using three rovers that are forced to execute a
crossing pattern. Fig. 10 presents the executed trajectories for
three runs with different initial locations and headings. Note
that the resolution strategies differ with the scenario. One of
the key features of MILP is that it handles the nonconvexity
directly and looks for solutions on all sides of obstacles and

conflicts. This example illustrates that DRSBK is making use
of this functionality, as opposed to other methods that could
simply refine the initial guess that are given. In these scenarios,
vehicles | and 3 are initially neighbors because they are closer
than 2D = 6.54 m, and thus compute sequentially. Vehicle 2
is initially independent of that pair, and thus solves for its plan
simultaneously with one of them. However, since the vehicles
are crossing, vehicle 2 joins the pair after a few time steps, and
then all three vehicles compute sequentially. Once the vehicles
finish the avoidance maneuver near the middle of the figure, the
group breaks up as the vehicles move apart and starts solving
for the plans simultaneously again. The results demonstrate
online dynamic grouping and regrouping of the vehicles using
the algorithm in Section IV-E.

VII. CONCLUSION

This paper presented a new distributed robust MPC algorithm
for multivehicle trajectory optimization. The approach extends
previous results to ensure robust feasibility without having to
plan all of the way to the goal and with only communicating the
plans within a local neighborhood rather than the entire fleet.
This two new features greatly reduce the computation effort and
facilitate a significantly more general implementation architec-
ture for the distributed trajectory optimization. Experimental re-
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sults on a multivehicle testbed demonstrate many advantages of
this algorithm including online distributed optimization, simul-
taneous computation, and the robust feasibility against the dis-
turbances in the real environment.

APPENDIX

A. Proof of Theorem 3.1

The proof of Theorem 3.1 is based on a recursion [17]. Once
a feasible solution o’ lk,:r;f"*k to the problem P(z;) is obtained

at time k, a candidate solution to P(z ) at time k£ + 1 is con-
structed from (21)—(24). Note that the disturbance realization
wh, at time k is available at time (k 4 1). Using that the fea-
sible solution u” rk,xf’ rk satisfies constraints (10)—(14), it can
be shown that

ATEL L k41 T BP’A‘Z+J'+1 | k+1
= AP BRI (AT + BPKP) Ljwy
= ek VI
satisfying (10) at £ + 1. Similarly, (11) at time k£ + 1 is
Cpipk+j+1|k+1 + DYk
=CPx i1k T DM i + (CF + DPKP) Ly
€ y;’, Vi~

since it can be shown using (17) that

Yiriv1k € Virr, Wi €WP
=>y‘,';f;j+1|k +(C? + D*K*)LZw} € VP,

It can be shown using (19) that the coupling constraints (13) at
time k£ + 1 is satisfied

n * p
L=t BLE ik = P (E Thy, i+1] k +ij2)
Lp Bl x, kit k € Zitle
w}, € WP

n
= ZEgﬁ’ZHHMH € Zje-

p=1

For the terminal constraints (14) at & + 1

x£+N|k € Q9 =Ry~ Ly _ W
=E vk € Ri
+ I,

=3P

E+N+1]k+1

=z

Y4
N+ k1 € Qs

LWERL, YweWr

Last, the following shows the output constraint for the terminal
step is satisfied:

3 p
Thn ke € R
— P 4
=C x£+N|k+l

+ DPgrP (i-i+N|k+l) € yﬁ,ﬁl.

= yz+N+1 | k+1

Therefore, the candidate solution satisfies, under the bounded
disturbance wf € WP, all the output constraints y;’ and
coupling constraints Z; . at time k 4 1, and the terminal state
:i:,’;+N+1]k+l lies in the set Q. Thus, feasibility at time k
guarantees feasibility at time & + 1 under the action of bounded
disturbance. If the first optimization P(zg) is feasible, then all

the future optimizations will be feasible. [ |

B. MILP Implementation of DRSBK Online Optimization

This Appendix shows the detailed MILP implementation of
DRSBK algorithm. The disturbance is assumed to be infinity-
norm bounded here, i.e, WP = {Gw | ||w|loc < Wmax}-
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1) Constraint Tightening for Robustness: The constraint
tightening in (17) and (30a)—(30c) are implemented using the
following constraint contraction parameters [18]:

ag =0, a;=aj1+|[1000]L%_ B’G||, wmax

Bo=0, Bj=p—1+C|[0010[LF_B"G|, wmax

Yo = 0, Yi = Yi-1 + C |”1 O]K’;_lL?_prGHI Wmax
J21 40

where a;, 3;, and -y, respectively represents the constraint con-
traction for position, velocity, and input for the jth prediction
step. The coefficient C = 1 when the constraint set (37) and
(38) and the disturbance set are both two-norm bounded. How-
ever, C = v/2 when performing the Pontryagin difference be-
tween a two-norm bounded set and the infinite-norm bounded
disturbance set W in (35). This is because W has the maximum
magnitude of the length V2Wmayx in the diagonal directions.

2) Output Constraint Set (11): The obstacle avoid-
ance constraints use binary variables. For each point
Thiilk = [Bhej ko Yhe;x]7 and each rectangular shaped ob-
stacle defined by two comers [Ziow, Yiow]~ and [Thigh, Yhigh]” »
the avoidance constraints can be expressed as

Vo.Vit &} iy S Bew, —az+ ML, (4la)
Yok S Yiow,, = @5+ MBL,  (41b)
Thorjpk 2 Thigh,, + 05 = My - (410)
Yiss |k = Ynigh,, + 05— MBL, - (41d)
4
D Ve, 3 (10)

i=1

where M is a large number to relax the constraints in
(41a)-(41d), and o denotes the index of the obstacle. The
logical constraint (4le) requires at least one constraint in
(41a)—(41d) be active. Note that the parameter «; tightens the
constraints by enlarging the obstacles.

The output constraint (11) also includes the bound on speed
and inputs. Let vectors r,v,, and a, respectively represent posi-
tion, velocity, and acceleration input in the inertia frame. A set of
ng linear constraints approximates the two-norm bounded con-
straints on the acceleration and velocity vectors, which in turn
limits the maximum turning rate

[0S B, . sin f)m]vzﬂ, [k < Vmax — B (42a)
[cos B, sin Hm]ai“ 1k S Gmax = ; (42b)
O =2Tm  Ym=1..... Tg-

ng

The minimum speed constraint is nonconvex and requires 7,
binary variables to express in MILP

[cos 8,n,. 8in 9m]vp+j |k 2 Vmin + 05 = 20max? (43a)

k vel,

N,
<mn, -1

Z b{{(‘l.jm —

m=1

(43b)

One advantage of MILP is that the optimization can consider the
entire range of vehicle dynamics allowed by these constraints.

3) Invariance Constraints (14): From the terminal states, the
vehicle has an option to enter a left or right loiter circle. The
centers of the left and right safety circles are

m p
Oi :TZ+N|k +R(5> VUmax ‘ﬂN‘lvl;_*-le

7 p
Or = rr’;+N|‘“ +R (—5) Umax — ﬂquerN“c (44b)

(44a)

where R(6) is a rotation matrix of angle 8, and p is the radius
of the turning circle given by

Ymax — ﬂN—l
Umin + ﬂN—l

(Umax - IBN—I)2
max — YN -1

p=

The second term accounts for the variability of the terminal
speed [[v}, | |l- The binary variable bf.¢, chooses cither the
left or right safety circle

O} - 2(p+an-1)(1-bg) <O° (45a)
Of +2(p+an-1)(1-bfg) >0 (45b)
O% —2(p+ an_1)b, < OF {45¢)
O% +2(p+ an_1)bl, > O. (45d)

A

With the notation OF = [z, .. Yoenser] -+ the Obstacle avoid-

[

ance constraints of the safety circle are written as

Vo : "l"gent.er < Tlow,, — (/7 + aNfl) + Mbgirc—obst,ol
(46a)
ygcnter < Ylow,, — (p+an-1)+ beir(:—()hst,ng
(46b)
mgenter 2 Thigh,, + (p + aN—l) - Mblc)irc—obst,os
(46¢)
ygentct b Ynigh,, + (P + aN—l) - beirc—obst,n4
(46d)
4
Z bfirc—obst,m S 3. (466)
i=1

4) Interconnected Constraints (13): Over the planning
horizon, the coupling constraints include vehicle avoidance
constraints

xzﬂ' Ik S mzﬂ' [k digal Mbggh»jl (472)
Yeriik S Viasin ~ i + MU, - (470)
Tf+1 Ik > IZ-{—j |k + dfgtal - MIJ{TZ)!,]3 (47C)
Yirik 2 Vs k T Qora — Mb{th.M (47d)
4
Z bf'gh, S 3 (476)
i=1 3
where
e 2d + 20y, q<p
‘total T 2d + a; + iy g > p.
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Beyond the planning horizon, constraints on the safety circles
ensure the vehicle avoidance

< tlonier — 2p+d +an_1) + MUY (482)
Yeenter < Yeenter — 2(p +d +an-1) + Mbsiqr% (48b)
T onter = Teenter T 2(p +d+an—1) = MUZL ~ (48¢)
Yronter 2 Ylenter +2(p +d+an_1) = MbEL ~ (48d)

p
xcenter

cire,; —

4
Zb” < 3. (48¢)
=1

5) Objective Function (20): The objective function uses a
binary variable b, to select one visible point 7%, from a list of
cost points, from which the cost-to-go is known. Letr., denote
the ith cost point and ¢ = 1,. .., ncp, where np, is a number of

cost points. Then

Nep
rsis = Z bgis,lrzczp»i (493)
i=1
Nep
B =1 (49b)
=1
Nep
Pt = 3 W 7 (72,) (490
i=1
JP ->— [COS 0"17 sin em] (rz+N | k_rfris> +fP (rgis) ) Ym
(49d)

where the cost-to-go fr (rﬁ’p’i ) from each cost point to the target
of vehicle p is calculated prior to MILP and is constant in MILP.
To ensure the visibility of the selected cost point r%,_ from the
terminal point x}, ANk obstacle avoidance constraints are en-
forced on n;,, interpolation points that are placed on the line

connecting 1%, and T} , v\,
l"ll‘i+Njk + (1 - Hl)$€§5 < Tlow,, ~ N1 + Mbipm.qol
(50a)
iy k+N l k + (1 - “’l)y‘ljls —<- ylowvo —an-1 + Mb{)“tuoz
(50b)
l“‘rZ—FN Ik + (1 - ,Ul)z{iis > Lhigh,, +an-1— A4b{)nt,,n3
(50c)
/1.13/£+N|k + (1= m)¥lis 2 Ynigh,, + an-1 =M int»m
(50d)

> obb, <3 (50¢)

=1

o= L =1, -

In summary, the MILP implementation of subproblem
PP(z}) is to minimize JP in (49d) subject to (9),
(10), and (41a)-(50¢). The optimization variables are
PLOP 7P, and all binary

vis?

¢l 2] p '}
"i+.j|k' k+jlk’ak+j|k’ L
variables b’s.
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This paper presents a formulation for distributed model predictive control (DMPC) of systems
with coupled constraints. The approach divides the single large planning optimization into
smaller sub-problems, each planning only for the controls of a particular subsystem.
Relevant plan data is communicated between sub-problems to ensure that all decisions satisfy
the coupled constraints. The new algorithm guarantees that all optimizations remain feasible,
that the coupled constraints will be satisfied, and that each subsystem will converge to its
target, despite the action of unknown but bounded disturbances. Simulation results are
presented showing that the new algorithm offers significant reductions in computation time
for only a small degradation in performance in comparison with centralized MPC.

1. Introduction

This paper presents a distributed form of model
predictive control (MPC) for problems involving
multiple subsystems, each with independent dynamics,
but subjected to coupled constraints. Uncertainty is
considered in the form of persistent, independent,
affine disturbances acting upon each subsystem. For
each subsystem, a local planning optimization is solved
once per timestep, without iteration, giving a more
scalable computation than a single large optimization
for the whole system. The subsystems communicate
with each other, enabling the coupling between them
to be enforced in each optimization. The algorithm
guarantees robust satisfaction of the coupled
constraints, feasibility of all optimizations involved,
and convergence to specified targets.

Centralized MPC, using numerical optimization
for online replanning, has been widely developed
and applied for constrained systems (Qin and
Badgwell 1997, Maciejowski 2002), with many results
concerning stability (Bemporad and Morari 1999,

*Corresponding author. Email: arthur.richards(a bristol.ac.uk

Mayne er al. 2000) and robustness (Scokaert and
Mayne 1998, Kerrigan and Maciejowski 2001,
Richards and How 2006). However, the computational
effort required for the optimization scales poorly with
the size of the system and can become prohibitive for
very large systems. To address this computational
issue, attention has recently focused on distributed
MPC (DMPC) (Camponogara et al. 2002), breaking
the optimization into smaller sub-problems, with the
rationale that solving many small problems is faster
and more scalable than solving one large problem.
Furthermore, in applications such as the control of
multiple vehicles (Pachter and Chandler 1998), large
chemical plants (Venkat ez al. 2004) or communication
networks (Yan and Bitmead 2005), there is a spatial
separation of control agents, and it is therefore natural
to distribute the control computation. The challenge
of this approach is to ensure that the distributed
decision making leads to actions that are consistent
with the actions of others and satisfy the
coupling constraints. Various approaches have been
investigated, including treating the influence of
other subsystems as an unknown disturbance (Jia and
Krogh 2002, Magni and Scatolini 2006), coupling pen-
alty functions (Shim et al. 2003, Waslander et al. 2003,
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Dunbar and Murray 2006), partial grouping of compu-
tations (Keviczky et al. 2006), loitering options for
safety guarantees (Schouwenaars et al. 2004) and
dynamic programming (Flint et al 2002). Some
approaches involve iterative negotiations between
subsystems (Waslander et al. 2003, Venkat et al. 2004)
and apply game theory or duality (Raffard et al. 2004)
to study convergence. Ling et al. (2005) propose
a sequential solution scheme with similar features to
the new method in this paper, but applied to a system
with coupled dynamics and no uncertainty. Distributed
MPC is also related to distributed optimization (Singh
and Titli 1978), with the distinction that the latter is
primarily concerned with finding optimal or
near-optimal  solutions, = whereas the former
commonly sacrifices optimality in favour of fast compu-
tation. Distribution is further complicated when distur-
bances act on the subsystems, making the prediction of
future behaviour uncertain. The new DMPC algorithm
in this paper is unique, to the authors’ knowledge, in
addressing the issue of feasibility and convergence for
systems with coupling constraints and persistent
disturbances.

The key features of the new DMPC algorithm are that
each subsystem (e.g., a vehicle) only solves a sub-pro-
blem for its own plan, and each of these sub-problems
is solved only once per time step, without iteration.
The method employs at each time step a sequential
solution procedure, outlined in figure 1(a). Under the
assumption of bounded disturbances, each sub-problem
is guaranteed to be feasible, thus ensuring robust
constraint satisfaction across the group, and its cost is
proven to decrease, implying that the system converges
to the target. The plan data relevant to the coupled
constraints is then communicated among the subsys-
tems. Figure 1(b) shows the information requirements
for sub-problem p. Each sub-problem accommodates
(i) the latest plans of those subsystems earlier in the
sequence and (i) predicted plans of those later in the
sequence. The principle of constraint tightening, used
for centralized MPC in Chisci et al. (2001) and
Richards and How (2006) to accommodate uncertainty
in future behaviour, is applied in the new algorithm to
account for uncertainty in the actions of other subsys-
tems. A key advantage of the constraint tightening
approach is that the complexity of the optimization
remains the same as for the nominal problem, which is
important for the scalability of the new algorithm.
At initialization, in common with most constrained
MPC formulations, e.g., Mayne er al. (2000),
Chisci et al. (2001) and Ling et al. (2005), it is necessary
to find a feasible solution to the centralized problem, but
this need not be optimal.

By adopting a sequential updating strategy, as
outlined in figure 1(a), in which only one subsystem

optimizes at a time and the results are passed on to its
neighbours, we are able to achieve firm guarantees of
feasibility and convergence for the class of problems
considered. The improved scalability follows because
the time to solve an optimization grows at least with
the cube of the number of inputs (Rao ef al. 1998) or
worse in more complex cases (Richards and How
2004). Therefore, if we consider an example problem
of n subsystems each with m inputs, giving a total of
mn inputs to the system, the centralized solution time
grows as O((mn)’). However, the distributed solution
time, allowing for the sequential process, grows only
as O(m’n) with a reduced dependency on n. Additional
benefits accrue because the computation delay in each
local loop is equal only to the time to solve the local
sub-problem, not the whole sequence (Richards
and How 2005). Furthermore, parallel computation
can be exploited in typical cases (Kuwata et al. 2006),
and we show- how structure in the constraints makes
this possible.

Section 2 presents the problem statement for DMPC
in a general form. Section 3 presents centralized MPC
solution for this problem, used for comparison and
initialization later in the paper. Section 4 develops the
DMPC algorithm and §5 proves its feasibility and
convergence properties. Section 6 investigates the
communication requirements for DMPC: while the
method relies on the ability to communicate intentions
between subsystems, it is possible to make use of
structure in the constraints such that only relevant
data is exchanged. Finally, §7 presents illustrative
examples of DMPC in simulation, comparing
performance and solution times with centralized MPC.

2. Problem statement

Consider the problem of controlling N, subsystems.
Each subsystem, denoted by subscript p € {1,...,N,},
has linear, time-invariant, discretized dynamics

xy(k + 1) = A,x, (k) + Bouy (k) + w,(k), Q)]

where x,(k) € > is the state vector of subsystem p
at time k, uy(k)e %Y is the control input to
subsystem p and w,(k) e MM is the disturbance acting
upon subsystem p. Assume all subsystems (A,,B,) are
controllable and the complete states x, are available.
The disturbances are unknown a priori but lie in
known independent bounded sets

Vk,p wy(k) € W, C R, ()
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Figure 1. Overview of distributed algorithm. (a) Procedure flow; (b) Information flow.

Each subsystem is subjected to the following local
constraints upon outputs y,(k) € RV

¥,(k) = CpX,(k) + Dyu, (k) 3)
y,(k) € Y, c R Vi, (4)

where the matrices C, and D, and the sets ), for each p
are all chosen by the designer.

The whole system is subjected to a set of N, coupling
constraints applied to outputs z.,(k) € %" summed
across the subsystems,

Yee{l,...,N:}:
ch(k) = Ecpxp(k) + Fcpup(k) Vp € {1,..., Np} (5)

NI'
ch,,(k) € Z. C WV vk, (6)
p=1

where the matrices E., and F,, for each ¢ and p and
the sets Z. for each ¢ are all chosen by the designer.
The division of the coupling into the N. separate
constraints will be exploited in § 6 to identify communi-
cation requirements based on structure.

The objective ts for tracking outputs s,(k) € RwY% for
each subsystem to converge to target sets

sp(k) = G,x,(k) + Hpu,(k) 7
sp(k) > S, as k — oo, (8)

where the matrices G, and H,, and the compact sets S,
for each p are all chosen by the designer. Note that

this represents a decoupled objective: coupling between
subsystems is only via the constraints on outputs z.,(k)
in this problem statement. This captures an important
class of problems, including, for example, maneuvering
a group of vehicles from one waypoint to the next
while maintaining relative formation and/or avoiding
collisions.

3. Review of centralized robust MPC

This section presents a short review of the centralized
form of the robust MPC problem for the problem
in §7. It is identical to the controller in Richards and
How (2006), treating the group of subsystems as a
single system and solving a single optimization for the
controls. The centralized formulation is relevant here
for three reasons: first, because a feasible solution to
the centralized problem is required to intialize the
distributed algorithm; second, because demonstrating
satisfaction of the centralized constraints is an
intermediate step in proving robustness of the distribu-
ted algorithm; and third, because centralized MPC 1is
used in the examples in §7 for comparison with the
new distributed controller.

The online optimization approximates the complete
problem in §2 by solving it over a finite horizon of N
steps. A control-invariant terminal set constraint is
applied to ensure stability (Mayne er al. 2000).
Predictions are made using the nominal system model,
ie., (1) without the disturbance term. The output
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constraints are tightened in a monotonic sequence
(Richards and How 2006) to ensure robust feasibility,
retaining a margin based on a particular candidate

policy.

Define the centralized optimization problem P(x(k))

Te(R(k)) = min Jo(%(6), Uk))
U(k)

Np N—1
=min Y Y d(s,(k + k), 5,()
Uk 33 =0
subject toVj € {0,...,N—1} Vpe{l,...,Np}
x,(klk) = x,(k) (%a)

Xp(k +J + 11k) = Apx,(k + jlk) + Bou,(k +jlk)  (9b)

yp(k + jlk) = Cpx,(k + jlk) + Dyuy(k + jlk) (9¢)
ch(k + k)= Ecpxp(k +jlk)

+Fu,(k+jk) VYeefl,...,N:} (9d)

sp(k + jlk) = Gpx,(k + jlk) + Hpu,(k + jlk) (9¢)

x,(k + Nlkye T, (9f)
Y,k +jlk) € V() %)
NP
D zglk+jlk) € Z() Veell,... N, (9h)
p=1
where

o the double index notation (k+jlk) denotes a
prediction for j steps ahead from time &

o the state x(k) denotes the combined state of all
subsystems {x(k), ..., xn,(k)}

e the decision variable U(k) denotes combined control
sequences for all subsystems {U;(k), ..., Uy, (k)
where each U,(k) denotes a sequence {u,(klk), ...,
u,(k+ N —1|k)}

e d(s,,S,) denotes a distance metric (Kerrigan and
Maciejowski 2004)

d(sp, Sp) = min fls, — S, | (10)
r€9p

« the local constraint sets ),(j) are tightened at future
plan steps in a monotonic sequence, ensuring the
existence of a margin to allow for future feedback
action in response to disturbances (Chisci et al.
2001, Richards and How 2006). The tightening is
embodied in the following recursions

Vpeil,....N}: Y (0) =Y (11a)
yp(j+ )= yp(j) ~ (Cp +Dpr(i))Lp(l)W s
Vie{0....,N—1) (11b)

o the tightened target sets S,(j) are found using the

A. Richards and J. P. How

following similar recursions (Richards and How
2006)

Vpe{l,...,N,} : S, (0)=S (12a)
Spi+ 1) = S() ~ (Gp + HK,(D)Ly(DW)y,
Vie{o,. .. ,N=1) (12b)

o the tightened coupling constraint sets Z.(j) are

found using the following recursions

Yeell,...,N} : Z.(0) = Z. (13a)

ZG+ 1) = Z.() ~ [(Ea + FaKiLiGIW) & - --

@(E(Np + FCNPKNp(j))LNp(j)WNP]a
Vief0,...,N—1) (13b)

o the operator *“ ~” represents the Pontryagin differ-

ence (Kolmanovsky and Gilbert 1998)
A~B=J{a|a+be A Vbe B} (14)

which has the following useful property, to be used in
§ 5 to prove the properties of the DMPC algorithm

ce(A~B)=>c+bed YbeB (15)

o the matrices K,()j€{0,...,N— 1} in (11), (12)

and (13) are candidate control laws for each subsys-
tem, chosen by the designer. A constant gain may be
used if required, but Richards and How (2006) dis-
cuss the benefits of the more general time-varying
gain. The associated state transition matrices L,(j)
are given by

L0)=1I (162)
LG+ 1) = (A, + B,K,())L, (),
Viel{0,...N -2 (16b)

o the terminal constraint sets 7, in (9f) are robustly

positive invariant sets (Kolmanovsky and Gilbert
1998), satisfying

(Ap + BK,(V = 1)x,
+ (Ap + B,K,(N — D)L,(N = Dw,, € T,
Vx, €T,, Yw,eW,, Vpell,...,N,} (17a)
(Cpxp + DK, (N — 1))x, € V,(N),
Vx, €Ty, VYpell,...,Np} (17b)
NI‘
Y (Eqp + Fe,Kp(N — D)x, € Z(N),
p=1

Veell,...,N.],

vixl,..., xf,p)T e{Tix - xTy)} (17¢)
(Gpxp + HK,(N — 1))x, € Sp(N),

vx, €T, Vpefl,..., N,}. (17d)
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Tools for determining suitable sets are available $p(k +j1Kk) = Gpxp(k+j1k) + Hpup (k +1k) (18¢)
(Kerrigan 2005). Note that if the candidate x,(k+Nk)eT, (18f)
controllers K,(-) are chosen such that they would drive ¥, (k+jlk) € Y, () (18g)

the undisturbed system to the origin in N steps
or fewer, then L,(N—1)=0 and the requirement
of robust control invariance in (17a) is relaxed
to nominal invariance, and simple forms such
as equilibrium points can be employed as terminal
constraints  (Richards and How  2006). The
centralized optimization is employed in the following
algorithm.

Algorithm 1:  Centralized MPC.

(i) Set k=0.
(ii) Find a solution to the centralized optimization
problem P(x(k)). If a solution cannot be found, stop.
(iii) Apply control wi(klk) to each subsystem p.
(iv) Increment k and go to Step (ii).

Given initial feasibility of P(x(0)), this controller
guarantees feasibility of all optimizations P(x(k)), satis-
faction of constraints (4) and (6), and convergence to the
targets (8), according to Richards and How (2006).

4. Distributed MPC algorithm

This section describes a distributed algorithm for solving
the problem in §2. The centralized optimization P from
§3 is divided into a sequence of N, sub-problems,
shown in figure 1, with each sub-problem solving for
the trajectory of only one subsystem.

Each sub-problem p solves for future controls
of subsystem p only. The current state x,(k) of
subsystem p and the output information for
other subsystems Z,(k) are constant parameters, obtained
by measurement and communication, respectively. It is
this communication of coupling information from other
subsystems that ensures consistency across the whole
system. The sub-problem P, (x,,(k),Z,,(k)) is defined as
follows:

T (x,,(k), Z,,(k)) =pinJy (x,,(k), Z,,(k),U,,(k))

N-1
=min Y d(s,(k+/1k),S,())
U &5

subject toVje{0,...,N—1}
Xp(klk) = x,(k) (18a)
Xp(k +j+ Hky= A x,(k +jlk) + Byu,(k +jlk) (18b)
Yo (k+ /1K) = CoX,(k + 1K)+ Dpuy(k +j1K)  (18¢)
2ep(k +j1K) = Epx,p(k +jlk)
+Fup(k+jlk) Yeell,...,N;} (18d)

Zeplk +jlk) +Zop(k+jlk) € Z.p() Vee(l,...,N}  (18h)

where

o the communicated coupling outputs Zp(k) consist of
output sequences for each cons~traint {Z1,(k), ...,
Zy p(k)} in which each element Z,(k) is a sequence
of output values {Z,(klk), ..., Zep(k+N— 1K)}
Each communicated output value Z.,(k+ jlk)
has two components, as shown in figure 1(b):
(i) the most recent plans of those subsystems earlier
than p in the planning sequence and (it) predicted
plans for subsystems later in the sequence

Zop(k + k) = [ S zk+ jlk):l

g€ll,p—1}

w3

ge{p+1..... Ny}
Vie{0,...,N—2} (19a)

2, (k+jlk—1)

o2

ge{p+i.. Ny}

x Xg(k+N— 1k —1) |, (19b)

where 7, (k + jlk) denotes the outputs associated with
the optimal solution to sub-problem ¢ at time k.
The predicted outputs for g > p are constructed
from the remainder of the plan from the previous
time-step and a single step of the control
law u; = K (N — 1)x,, to keep the subsystem state in
its terminal set.

o the modified coupling constraint sets Z.(j) are

given by

Ve ell, .., Ne}: Zn (0) = 2, (20a)

Zop—1y(D) = Zep() ~ (Eqp + F, K, (NL,(DW,  (20b)
ZonG+ D =Za() ~ (Eq + FaKi()Li(W)

Viel0,....N—2}. (20¢)

Besides the change to consider only one subsystem,
the key difference between the DMPC
optimization above and the centralized optimization
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in §3 is the tightening of the constraints in
(20). Additional margin is included in the coupling
constraints of each sub-problem to account for
the uncertainty in the predicted plans for other
subsystems. It is this feature that ensures the feasibility
of the distributed, sequential optimization process.
The sub-problems P, are employed in the following
algorithm.

Algorithm 2:  Distributed MPC.

(i) Set k=0. Find a solution to the initial centr-
alized problem P(X(0)). If a solution cannot be
Jound, stop.

(i) Apply control uy(k) = wy(k|k) to each subsystem p

@ii1) Increment k.
(iv) For each subsystem p in order 1,...,N,:

(a) Construct the outputs Z,,(k) from  other
subsystems, defined by (19), via communication.
(b) Solve sub-problem P,(x,(k), Z,(k)).

(v) Go to Step (ii).

Note that Step (i) does not require finding the
optimal solution of the centralized problem,
although that is one way of finding the initial
plan. Also, the algorithm presented above implies
communication between all pairs of subsystems at
every step, to provide the information (19) required in
Step (iv)a. This form will be retained throughout the
next section for simplicity when proving the properties
of the algorithm. Then in §6, it is shown that the identi-
fication of structure in the constraints leads to equiva-
lent forms with much weaker communication
requirements.

In Algorithm 2, observe that the state x,(k) of
subsystem p is not needed until the solution of
sub-problem P, (x,(k), Z,,(k)), and that the control
u,(k) is available as soon as that sub-problem
is solved. Therefore, by judicious choice of
sampling schemes (Richards and How 2005), the
computational delay in each local feedback loop
is only the time to solve the local sub-problem in
Step (iv)b, not the whole sequence of sub-problems
in Step (iv).

5. Properties of DMPC

This section proves the main results of this paper: that
Algorithm 2 guarantees feasibility of all optimizations
involved, satisfaction of constraints (4) and (6), and
convergence to the targets (8).

5.1 Feasibility and constraint satisfaction

The development for feasibility and constraint satisfac-
tion involves several intermediate results, all proving
that the feasibility of each sub-problem follows from
feasibility of its predecessor in Algorithm 2, as shown
in figure 1(a). This sequence is proven using three propo-
sitions. Proposition 1 shows that existence of a feasible
solution to the centralized problem at some time step
implies feasibility of the first sub-problem at the sub-
sequent time step, Proposition 2 shows that feasibility
of any sub-problem 1 to (¥, — 1) at any step implies fea-
sibility of the subsequent sub-problem; and Proposition
3 shows that feasibility of the final sub-problem N, is
equivalent to the existence of a feasible solution to the
centralized problem. The overall result follows by
recursion: the existence of an initial feasible centralized
solution, ensured by Step (i) of Algorithm 2, implies
feasibility of all subsequent optimizations.

In every case, feasibility is shown by constructing a
particular candidate solution, using the candidate
policies K,(j) to compensate for disturbances.
The section begins with a lemma showing that the
constraints of one of the sub-problems are equivalent
to those of the centralized optimization in §3, which
will be useful in subsequent results. There follow the

three propositions forming the overall recursion, The

section ends with the theorem combining the intermedi-
ate results to prove the main result.

Lemma 1: Zn,()=Z()Vj€{0,...,N}), ie, the
constraint sets for the summed coupling outputs in the
centralized problem P, computed using (13), are identical
to the constraint sets for the coupling outputs in
sub-problem Py,, computed using (20).

Proof: Comparison of (13a) and (20a) shows that

Zxn,(0) = Z2.0). From Kolmanovsky and Gilbert

(1998), Theorem 2.1(v), it is known that
(A~B)~By=A~ (B &B5,).

Applying this result to the recursions in (20b) gives

Za() = Zew,() ~ [(E2 + FoKo (L2 ()W @ - - -
6B(ECN," + FCNNKNH(]))LNPU)WNn]‘

Appending the recursion step (20c) then gives

ZnG+1) = Zen,() ~ [(Bet + Fa KiYLi ()W) @ -
& (Ecn, + Fox, Kn, ()L, ()W, ]

which is identical to the recursion (13c) used to construct
sets Z.(j). Hence, since the initial sets Z.y,(0) and Z.(0)
are identical and the recursions used to construct



Downloaded By: [Massachusetts Institute of Technology] At: 14:28 15 April 2008

Robust distributed model predictive control 1523

subsequent sets Z.,(j) and ZA)) for j>0 have
been shown to be equivalent, then Z.v ()= Z.()
for all j. (]

Notation: In the remainder of this section, the
following notation is employed.

o U'(k) denotes a known solution to the centralized
problem P(x(k)).

» U (k) denotes a known solution to the sub-problem
Py(x,(k), Z,(k)).

. u;(-lk) denotes the individual control elements of
the known solution U*(k).

o X;(-k), y,(lk), z;,(:|k) and s;(-|k) denote the
individual state, local constraint output, coupling
constraint output and tracking output elements,
respectively, associated with the known solution
U;(k), together satisfying (18b), (18c) (18d) and
(18e).

o U,(k) denotes a cardidate solution to the sub-
problem P,(x,(k), Z,(k)).

e Uy(-|k) denotes the individual control elements
of U,(k).

o X,(|k), ¥,(:k), Zc,(-k) and $,(-|k) denote the indivi-
dual state, local constraint output, coupling con-
straint output and tracking output -elements,
respectively, associated with the candidate solution
U,(k), together satisfying (18b), (18c) (18d) and
(18e).

The following three propositions are required to prove
feasibility of Algorithm 2. Note that each proposition
follows on from its predecessor. This sequence will
also be used in a recursion in the subsequent Theorem
to prove that feasibility of each sub-problem follows
from feasibility of the preceding sub-problem.

Proposition 1:  [If
(i) at any time step ko, a set of solutions U*(ky) is
known, satisfying the constraints of P(X(kg)) in §3,
and \
(i1) the controls uy(ko) = wy(kolko) are applied to the
system at time step ko,
then at the subsequent time step ko+1 the first
sub-problem Py(xi(kg + 1), Zytko + 1)) in §4 s
feasible for all disturbances w\(ky) € W).

Proof: Consider the following candidate solution
U, (kg + 1) for sub-problem P(x,(ko + 1), Z;(ko + 1))

ay(ko + 1 +jlko + 1)
= uj(ko + 1 + jlko) + Ky (HL1 (j)wi (ko)
Vie{0,...,N-2) (21a)
(ko + Nlko + 1)
=K (N — DX (ko + Nlko + 1) (21b)

This candidate solution is formed by taking from the tail
of the known feasible solution U*(k), adding one step
using controller K;(N —1) at the end, and adding
perturbations representing the rejection of the
disturbance by the candidate controller K;(-) and the
associated state transition matrices L;(-).

The initial state x;(ko+ 1) is given by the true
dynamics xilkg+ 1) = A1X1(k0)_+ Byuy (ko) + wi (ko).
Also, the dynamics constraints of P(x(ko)) ensure x;(ko
+1ko) = A xi(ko) + Byuy(ko). Comparing these two
expressions shows X;(ko + 1) = x%(ko + ko) + wi(ko).
With this initial condition and the candidate control
sequence (21a), the dynamics constraint (9b) gives the
following candidate state sequence, also expressed as a
perturbation from the plan at time ko and using the
state transition matrices (16)

Xy(ko + 1+ jlko + 1) = x"(ko +/ + 1lko) + L1()w1 (ko)
Vjief0,...,N—=1} (22)

and corresponding local constraint output sequences

Yilko + 1+ jlko + 1) = yj(ko +/ + 1lko)
+ (Cy + DK ()L ()wi (ko)
Viell,...,.N-2} (23a)
¥1tko + Niko + 1) = (Ci + DIKy(N = 1))
x X} (ko + Nlko)
+(CI+ DKV - 1)
x Liy(N = Dw (ko). (23b)

Feasibility of U*(ko)  implies yi(ko +Jj+ llko)
eViG+DVje{0,...,N—1}, from (9g), and (Ci+
D(K(N — D)x}(ko + Nlko) € Yi(N), from (9f) and
(17b). Therefore, since V;(j+ 1) is related to Y;(j) by
the Pontryagin difference in (11b) with the known
property (15), the perturbation expressions (23) imply
Vitko + 1+ jlko+1) € Vi() ¥j € {0,..., N — 1}, satisly-
ing all the local constraints.

Next, consider the coupling constraints (18h). Similar
to (23), the coupling constraint outputs associated with
the candidate solution (21a) are

Yeell,...,N.}:
Ze(ko + 1 +jlko + 1) = 2}, (ko +j + ko)
+ (Ect + FaKi())Li (w1 (ko)
Viell,...,N-2} (24a)
Zci(ko + Nk + 1) = (E;) + FaKy(N = 1))
x X*(ko + Nlko)
+(Eq +FyKi(N - 1))
x Li(N — Dw (ko) (24b)
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Combining these with the communicated output
sequences Zj(kp + 1), constructed using (19), gives
expressions for the summation on the left hand side

of (18h)

Zoalky + 1+ jlko + 1)+ Zako + 1 +jlko + 1)

= l: Y o+ +j|k0):|
q

STA
+ (Ec1 + FaKi()L1()wi (ko)
vie{o,...,N—2} (25a)
Zei(ko + Niko + 1) + Zy (ko + Nlko + 1)

qe{l..N,}

= [ Z (Ecl +FclKl(N— 1))X*(k0 + leO):I
+ (Eci + Fo Ki(N — D)Li(N — Dwi (ko). (25b)

In order to show that these quantities satisfy the
constraints (%h), first use the fact that since U*(kop)
satisfies the constraints of P(X(ko)) then from (Sh), (9f)
and (17¢)

3 (B 4+ FuKi(V — D)X (ko + leo)jl € Z.N).

| geil )

Then, using Z((j):ZCNp(j) Vj from Lemma 1, the
Pontryagin differences (20c) and the perturbation
expressions (25) show 2z, (ko +j+ ko + 1) + Zc1 (ko +
J+lkg+D)eZy() Vie{0,...,N—1}. Hence the
coupling constraints are satisfied.

Finally, it remains to show that ﬁp(ko + 1) satisfies
the terminal constraints. Combining the final
control step (21b) and the state sequence (22) in
the dynamics constraint (18b) gives the predicted
terminal state

Xitko+ N+ llkg+D=A+BKi(N-1))
x X (ko + Nlko)
+ (A +BKi(N-1))
x Li(N — D)wi (ko).

Feasibility of U*(ke) implies x}(ko+ Nlko) € 7, and
hence the invariance requirement (17a) ensures
Xi(kg + N+ llkg + 1) € T;. satisfying the terminal
constraint.

The above has shown that the candidate sequence
Uiko +1) is a feasible solution to Pi{xj(ko + 1),
Zy(ko + 1)), hence this sub-problem must be
feasible. (|

Proposition 2: If

(i) at any time step ko, a set of solutions U*(ko) is
known, satisfying the constraints of P(x(kg)),

(ii) the controls wy(ko) = wj(kolko) are applied to the
system at time step ko,

(iii) for some subsystem py € {1,...,(N, — 1)} a solution
U (ko + 1) is known, satisfying the constraints of
sub-problem Py (X, (ko 4 1), Zp (ko + 1)),

then the sub-problem P, (Xp,41(ko + 1), Zp0+|(k0 + 1))

is feasible for all disturbances Wy, 1(ko) € Wyt

Proof: Consider the following candidate solution
Vg1 (ko + 1) FOr Py (py41(ko + 1), Zp 1 (ko + 1)

by +1(ko + 1 +jlko + 1) =} (ko + 1+ ko)
+ Ky + 10D Lpy+1()Wpy1(Ko)
Vie(0,...,N=2}  (26a)
Upo+1(ko + Nlko + 1) = Kp i (N = 1)
X Xpo11(ko + Nlko +1). (26b)

This sequence is constructed in the same way as the
candidate in (21). Satisfaction of the local constraints
(18g) and the terminal constraints (18f) follow from
identical arguments to those used in Proposition 1.
It remains to show that the coupling constraints (18h)
are satisfied by this candidate. Substituting the
candidate sequence U, (ko + 1) into the construction
of the communicated data (19) gives

Zego 1)Ko +j + Hko + 1) + Zepo s 1y(ko +j + ko + 1)
=27, (ko +j+ ko + 1) + Zep, (ko +j + ko + 1)

+ (Eepor1) + Fepot K41 (D) Ly 4 10)Wp 1 (o),
Vie(0,...,N—1) Q7

and we know from feasibility of U;o(k() + 1) that

24y, (ko .+ ko + 1) + Zapo (ko + )+ 11ko + 1)
€ Zp() Vje{0,...,N—1}.

Therefore, by applying the property of the Pontryagin
difference (15) to the constraint tightening recursion
(20b), we find that

Zopornyko + 7+ Uko + 1) + Zegor 1y(ko +j + ko + 1)
€ Zepo+h)
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hence the coupling constraints (18h) are satisfied,
the candidate U i1(ko+1) is feasible and so
the sub-problem Py i(Xp,4+1(ko + 1), Zyy11(ko + 1)) is
feasible. O

Proposition 3:  If at any time step ko+ 1 there exists a
solution U;(ko +1) for every pefl,...,N,}, each
satisfying the constraints of corresponding sub-problem
Pp(Xp(ko + 1), Zy(ko + 1)) then the combination of those
solutions U(ky + 1) = {Uj(ko + 1), ..., U;,p(ko + 1)} also
satisfies the constraints of the centralized problem
P(x(ko + 1)).

Proof: Satisfaction of the local constraints (9g)
and terminal constraints (9f) of the centralized
problem follow from satisfaction of the corresponding
constraints (18g) and (18f) of each sub-problem
pefl,...,N,}. It remains to consider the coupling
constraints (9h). Substituting into (18h) with p=N,
for the communicated outputs from (19) gives

Nl’
Doz ko+j+1lko+ 1) € 2w,
p=1

>, 1 Gaasaling

..... z e nann ¥ o
ilia 1, llllyllcb

"w'hich, sifice L/C(/:) = ZcN,,(j) Vj from Lemm
that the coupling constraints (9h) of the centralized
problem are satisfied if the coupling constraints (18h)
of the final sub-problem By, (xn, (ko + 1), ZNﬂ(ko + 1))
are satisfied. Therefore U(ky+ 1) satisfies all the
constraints of the centralized problem P(x(ko + 1)).

Theorem 1: Robust feasibility and constraint
satisfaction of DMPC. If the systems (1) are subjected
to disturbances obeying (2) and controlled using
Algorithm 2, and if a feasible solution to the initial
centralized problem P(X(0)) can be found, then all
subsequent sub-problems P,(x,(k), Z,,(k)) are feasible
and the outputs (3) and (5) satisfy constraints (4) and
(6), respectively.

Proof: Assume that at some time step ko, a solution
is known to the centralized problem P(X(ko)). Then by
Proposition 1, sub-problem P (x (ko + 1), Z (ko + 1))
is feasible. Using Proposition 2 recursively, every
subsequent sub-problem P,(x,(ko + 1), Zp(ko +1)) is
feasible for p € {2,..., N,}. By Proposition 3, feasibility
of the final sub-problem Py (xy,(ko + 1), ZNp(ko + 1))
implies that a solution is known for the centralized
problem P(x(ko + 1)). This completes an outer
recursion, showing that knowledge of a feasible solution
to P(x(ko)) implies that a feasible solution can be found
for P(x(ko+ 1)). Therefore, knowledge of an initial
feasible solution U(0) implies feasibility of every
subsequent sub-problem in the DMPC algorithm.

Constraint satisfaction follows from Proposition 3,
which showed that the combined solutions to all the
sub-problems satisfied the centralized constraints.
Substituting j=0 into (9) and combining with the
control law u,(k) = wi(k[k) yields constraints that are
equivalent to those in the problem statements
(4) and (6). Therefore feasibility implies constraint
satisfaction. O

5.2 Convergence to target

The proof of convergence under Algorithm 1 builds
on the results concerning feasibility in §5.1.
Propositions 1, 2 and 3 showed that a particular
candidate solution was feasible for each sub-problem.
To prove convergence, this solution is used to provide
an upper bound on the optimal cost J(X,(k), Z,(k))
for each sub-problem. This then leads to a Lyapunov-
like result showing proving the desired convergence
result (8). The section begins with a lemma regarding
the distance metric which will be useful in the proof
of robust convergence.

Lemma 2: Property of distance metric. Let B and C be
compact sets. For any a, d(a+c¢,B) < d(a, B~ C)Vc e C.
Proof: iet dy = d(a, 3~ (). From the definition (i)
of the metric, there exists a b* € B~ C such that
la—b*|| =d,. Then by the definition (14) of the
Pontryagin difference, the vector b*+c¢e B for all
ce . Therefore d(a+c,B)=minglla+c—>b| <
lla+ec— (" +o)ll = lla—b*| =d. 0

Theorem 2: Robust convergence of DMPC. If the
systems (1) are subjected to disturbances obeying (2) and
controlled using Algorithm 2, and if a feasible solution
to the initial centralized problem P(x(0)) can be found,
then the tracking outputs (7) converge as required by (8).

Proof: From Theorem 1 and Propositions |
and 2, we know that if Uj(ko) is a feasible (in this
case also optimal) solution to P,(x(ko), Z,(ko))
for any ko > 1 and the control g;(ko)zu;(kolko) is
applied, then a candidate solution U,(ko + 1) is feasible
solution to sub-problem Py(x,(ko + 1),Z,(ko + 1))
for pe{l,...,N,} where the control clements of the
candidate are given by

i, (ko + 1 +jlko + 1) = ws(ko + 1 +jlko)
+ Kp(DLp()Wp(ko)
Vjef0,....N~2}
U,(ko + Nlko + 1) = K,(N — D)X,(ko + Nlko + 1).
(28)
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Then from (18e), the predicted tracking outputs
associated with that candidate solution are

Spko +J + Llko + 1) = sy (ko +j + ko)
+(G, + Hpr(]))Lp(j)wp(kO)
vielo,...,N=2} (29a)
S,(ko + Nlko + 1) = (G, + HK,(N — 1))
x X (ko + Nlko + 1)
+(Gy + HK,(N — 1))
x Ly(N — Dw,(ko). (29b)

Applying Lemma 2 to (29a) gives

d(8, ko + 1+ jlko + 1), Sp(7)
< d(s}(ko +Jj + 1lko),
Sp0) ~ (Gp + HK,(DLp(IW,)
Vi€ {0,...,N =2}, Ywy(ko) e W,

and by comparison with the target set tightening
(12b) this is equivalent to

d(S,(ko + 1 + jlko + 1), Sp())
< d(sy(ko +j + liko), Sp(j + 1)) Vjie{0,...,N—2},
pr(ko) € Wp.

Furthermore, feasibility of U;(ko) implies (G, +
H K, (N — D)x;(ko + Nlko) € Sp(N), from (9f)
and (17d). Therefore, the Pontryagin difference
in (12b) and the property (15) imply
Sp(ko + Nlko + 1) € S,(N — 1), such that the final step
incurs no cost because the predicted tracking output is
inside the target set

d(gp(k() + Nlkg + 1), S,,(N — 1)) =0.

Combining these findings gives a bound on the cost
Jp(xp(kO + ]), Zp(kO + ])a Up(k() + ]))

Jp(xplko + 1, Zy (ko + 1), Uplko + D)

N-1

=Y d(Sp(ko +j + ko + 1). S,()
=0
N-2

< 3 d(spko +j+ ko). S, + 1)

Jj=0

and this bound can be expressed in terms of the optimal
cost at kg

Tp (%ot + 1), Zylleo + 1), Tty + 1))
< 73 (%pko), Zy (ko)) = d(sykolko), S,(©)).

Since ﬁp(ko + 1) is a feasible solution, this provides a
bound on the optimal cost

T2 (ko + 1), Zylleo + 1) < 73 (%p(ko), Z, (ko))
— disjkolko), S,(0))

Since d(-) > 0 by construction in (10), then Ji(x,(k),
Z,(k)) must be a decreasing function. Furthermore,
J(xp(k), Z,(k)) cannot become negative, by definition,
so it must converge to a steady value. This implies
d(s,(klk), Sp(0)) = d(sp(k),Sp) - 0 as k — oo which,
by the definition of the metric d(-) and the assumption
that each S, is compact, implies that s,(k) — S,
as k — oo.

Remark 1: Note that the results in §5.1 did not make
use of the cost function or of optimality of the solutions.
Therefore, for problems that do not require convergence
and are only concerned with constraint satisfaction, any
form of cost function can be employed and the solutions
found for each sub-problem need only to be feasible, not
necessarily optimal. For example, spacecraft formation
control is sometimes expressed as the need for each
spacecraft remain in an ‘“‘error box’ relative to the rest
of the formation (Inalhan er al. 2002). It would be
possible to employ DMPC minimizing fuel consump-
tion, the typical objective for spacecraft, and still
guarantee constraint satisfaction.

6. Communication requirements

The development so far has assumed that problem
Po(xpk), Zy(k)) includes coupling data z;‘q(k +jlk) for
all constraints ¢ e {l,..., N} and for all other sub-
systems g # p, according to (19). This implies communi-
cation with all other subsystems at every time step.
However, this section shows that by identifying
structure in the coupling, significant relaxation of that
requirement can be achieved.

Define P, as the set of all subsystems affected by
constraint ¢

Pe={pell.....N} | [E, Fo] #0}.  (30)
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This allows us to identify and eliminate identically zero
terms in the summation of the coupling data (19),
leading to the following equivalent form.

zoy(k +jlk) = [ > zk +j|k)]
qePN{1L,....p—1}
+ > Zk+k-1)
qeP.N{p+1,....N,)
Vjie{0,...,N—1} (31a)
Zep(k + N — 11k) :[ Z Zi(k+ N~ nk)]
gePNll,...p—1)

+ [ D (Eeg + Fo Ky (N = 1))

gePN{p+1,..,Np)

x xf,(k+N—1|k—])]. (31b)

Also define C, as the set of constraints involving
subsystem p

Cr={cell,... ., NI [E, F]#0}.  (32)

Then, according to (18d), constraints not in C, have no
effect on sub-problem P,(x,(k), Z,(k)), and hence can be
omitted, replacing (18d) and (18h) with

Zcp(k +]‘k) = Ecpxp(k +Jlk) + Fcpup(k +]lk)
Ve eC, (33a)
Zep(k + J1K) + Zcp(k + j1K) € Z2,(j) Ve el (33b)

The modified forms (31) and (33) are equivalent to the
originals (19) and (18d, 18h), respectively, so the results
on feasibility and convergence still hold.

Finally, inspecting (31) and (33) shows that problem p
only involves coupling data from other subsystems
q € P for all ¢ € C,. Define the set of all other sub-
systems coupled to p as

Q= (U Pf) \ (o}, (34)
ceCp

Therefore, sub-problem P,(x,(k), Z,,(k)) only requires

information to be communicated from subsystems

in Q,.

Structure in the constraints also enables parallel
solution of sub-problems in some cases. Suppose
po+ 1¢Qp for some subsystem pge{l,..., N, —1}.
Then sub-problem P, does not need any information

from sub-problem P, and all the information needed to
solve sub-problem P, .; is available at the time
sub-problem P,, is started. Therefore, sub-problems
Py, and P, ,; can be solved in parallel. Consider a
typical example in which subsystem 1 is the leader and
subsystems 2 and 3 are followers, constrained relative
to the leader but not to each other. Then sub-problems
P, and P; can be solved in parallel, giving the planning
sequence {1,(2&3),1,(2&3),...}. This principle can
be extended to enable any number of decoupled
subsystems to plan in parallel (Kuwata et al. 2006).

7. Examples

This section presents simulation results demonstrating
DMPC and comparing its performance, in terms of
both the objective value and computation time, with
centralized MPC. Further results can be found in
Richards and How (2004), illustrating the application
of DMPC to multi-aircraft collision avoidance, and in
Richards and How (2005), implementing DMPC on
robotic vehicles.

The examples in this section involve five identical
point masses moving in 1-D and required to remain
within a specified distance of each other as they moved
from an initial offset to the origin. The dynamics of
each subsystem were

1 1 0.5
Ypefl,...,5): A,,:I:O 1], B,,:[ i :l

A random disturbance of up to 0.1 in magnitude acted
upon each subsystem

Vpefl,....5): Wy={we R | w]y, <0.1}.

Local constraints restricted the position |x, | < 10,
velocity |x, 2| <1 and control |u,| < 1. The target was
to drive all the masses close to the origin |x, | < 0.5
and the initial condition had all masses stationary and
collocated with x, =[5 01" ¥pe{l,...,5}. The corre-
sponding constraint parameters were Yp € {1,...,5}:

Y, =lyeR | ml <10, 2l <1, sl <)
Gp:[l 0]’ H,,:[O],
Sp={seMN|ls] 0.5}
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Figure 2. Simulation results from DMPC for example with five point masses. Constraints are satisfied throughout and states
converge to targets. (a) State space trajectories; (b) Position time histories.

The distance metrics d(-, -) were implemented using one

norms. There were
5
v=()=10

coupling constraints, requiring that the positions of
every pair of masses remain within 0.6. Hence the
coupling constraint sets were Z, ={z e R | [z] < 0.6}
for all ¢ and, for the constraint ¢,, associated with the
pair (p, ¢), the coupling output matrices were

Equl’ = [1 0]’ Ecﬂq‘l = _E"I"Ip’
E,,=[0 0] Vr#pg F,,=[0] Vvp

The horizon was set to N=10 and the candidate
controllers were a simple constant LQR design

Vpe{l,....5): K,(j)=[—0.6667 — 13333]
Vjel0,..., N}

The algorithm and simulation were implemented in
Matlab, with the optimization solved using the
“linprog” linear program solver within the Matlab
Optimization Toolbox. For simplicity, all of the sub-
problems were solved on the same computer, running
Windows on a 3.2 GHz processor with 1 GB of RAM.
This is possible because the sub-problems are solved
sequentially. While this is not strictly a distributed
implementation, the results still illustrate the effect on
computation of dividing a single optimization into a
sequence of sub-problems.

For the first set of simulations, constant step distur-
bances were introduced at the second step

0, k=l
wylk) = [v"v,,, otherwise
and each subsystem was subjected to a step taken from a
different vertex of the disturbance set, apart from one
subsystem, which received no disturbance

_ {0 _ (01 - 0.1

W= (o)’ W2 = (0.1)’ W= (—0.1)’

- (-0l _ (01

W= ( 0.1 ) W= (—0.1)'
Figure 2 shows the results from the application of
DMPC as described in §4 to this system. The state
space trajectories in figure 2(a) show that the local
constraints were always satisfied and each subsystem
position converged to the target set. Figure 2(b) shows
the time histories of the position of each mass.
The shaded tube is constructed to enclose #0.3 about
the median position. Therefore, since the positions all
remain within this tube, no two masses were ever more
than 0.6 apart and so the coupling constraints were
satisfied. Note that in both figures, the system can be
seen to run right up to the constraint boundaries.
Hence the key advantage that MPC is explicitly aware
of constraints is retained by DMPC.

For comparison with the working example in
figure 2(b), figure 3 shows position time histories for
two simulations using two different controllers, each of
which included a deliberate error in the implementation
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Figure 3. Simulation position time histories for comparison DMPC examples with implementation errors. Constraint violations
can be seen in both cases. (a) Coupling constraints omitted; (b) Disturbance model reduced by 10%.

of DMPC. Figure 3(a) shows the results using DMPC
but with the coupling constraints omitted in the optimi-
zations. This is equivalent to using MPC independently
for each subsystem subject only to its local constraints.
Since the coupling constraints were violated in this
case, we infer that the satisfaction of the constraints
seen in figure 2(b) is a direct result of the communication
in the DMPC algorithm.

Figure 3(b) shows another set of position results,
this time using DMPC with coupled constraints but
with the disturbance models W, used for constraint
tightening reduced by 10%. The disturbances applied
in the simulation remained as described above, and
therefore the requirement that w,(k) € W, from (2) is
not satisfied. Since the guarantee of feasibility does not
hold in this case, the controller was configured to
apply u,(k) = K,(0)x,(k) if the sub-problem P,(x,(k))
could not be solved. Feasibility was lost during the
simulation, and the figure shows that constraint
violations occurred. Therefore, since the controller fails
when the disturbance exceeds its assumed bound by a
relatively small amount, the success of the results
shown in figure 2 can be attributed to the correct
constraint tightening.

To investigate the computation and performance
trades of DMPC in comparison with centralized MPC,
the point mass problem was solved with both methods
for varying numbers of subsystems between N,=2
and N, = 20. DMPC was implemented as described in
§4 and the disturbances were chosen randomly at
each step from within the assumed bounds. Figure 4
compares the solution times, taken as the total of all
the optimization times over a 20 step simulation, for

MPC and DMPC. The solution times for DMPC are
broken down per sub-problem, but the overall height
of the bar is the appropriate measure as sub-problems
must be solved in sequence. Note that the vertical
over five times faster than normal MPC. Figure 5
compares the performance of the two controllers,
taken as the sum of the performance objective
Z:’;, Zfi, d(s,(k), S,), for the same range of problems.
Each bar is broken down by subsystem in both cases.
The scales of both plots are identical, and hence it is
clear that there is very little performance difference.
Closer inspection reveals that DMPC has slightly
poorer performance than MPC. This is to be expected,
as DMPC approximates the overall optimization using
the sub-problem sequence and therefore is a more
constrained solution approach. However, taking
figures 4 and 5 together, DMPC is shown to offer
significant computational benefits for only a slight
penalty in performance.

8. Conclusion

A formulation for distributed model predictive control
(DMPC) has been presented. It solves the problem of
control of multiple subsystems subjected to coupled
constraints but otherwise independent. Each subsystem
solves a sub-problem involving only its own state
predictions. The scheme is proven to guarantee robust
constraint satisfaction and convergence under the
assumption of bounded disturbances. Each sub-problem
is guaranteed to be feasible, convergence is guaranteed,
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Figure 5. Performance comparisons of MPC and DMPC for
different numbers of subsystems, broken down by individual
subsystem.

and no iteration between subsystems is required. Results
for a simple example have shown that the computation
for DMPC is faster and more scalable than the
equivalent centralized controller and that there is very
little performance degradation in switching from
centralized MPC to DMPC.
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Cooperative Decentralized Robust Trajectory

Optimization using Receding Horizon MILP

Yoshiaki Kuwata Member, IEEE, and Jonathan P. How Senior Member, IEEE

Abstract

Motivated by recent research on cooperative UAVs, this paper introduces a new decentralized trajectory optimiza-
tion approach for systems with independent dynamics but coupled constraints and objectives. The overall goal is to
develop a decentralized approach that solves small subproblems while minimizing a fleet-level objective. In the new
algorithm, vehicles solve their subproblems in sequence, while generating feasible modifications to the prediction
of other vehicles’ plans. In order to avoid reproducing the global optimization, the decisions of othzr vehicles are
parameterized using a much smaller number of variables than in the centralized formulation. This reduced number of
variables is sufficient to improve the cooperation between vehicles without significantly increasing the computational
effort involved. The resulting algorithm is shown to be robustly feasible under the action of unknown but bounded
disturbances. Furthermore, the fleet objective function is proven to monotonically decrease while going through the

vehicles in the fleet and over the time. Simulation results are presented to compare the distributed, centralized, and

othe n_coone
other (non-coope

simulations and a hardware experiment demonstrate that the proposed algorithm can improve the fleet objective by

temporarily having one vehicle sacrifice its individual objective, showing the cooperative behavior.

Index Terms

Cooperative control, Distributed, Multi-vehicle experiments, Robust Model Predictive Control (MPC).

I. INTRODUCTION

Teams of multiple UAVs have many applications, such as border patrol, cooperative search and track, and mobile
sensor network [1]-[5]. To enable fleet-level cooperation, the overall control system must properly capture the
complex interactions between the vehicles and tasks. One approach is to solve this problem globally, but centralized
algorithms typically scale very poorly with the fleet size because of the computational effort involved. A natural
approach to decompose the centralized problem is to let each vehicle optimize its own decision variables. A key
challenge of decentralized control is to ensure that the distributed decision making leads to actions that satisfy the
coupling constraints with other vehicles [6], [7], so that the fleet as a whole executes consistent plans. Various
approaches have been investigated to address this problem, including treating the influence of other subsystems as
an unknown disturbance [8], coupling penalty functions [9]-[11], partial grouping of computations [12], loitering
options for safety guarantees [13], and dynamic programming [14], [15]. Some approaches involve iterative ne-
gotiations between subsystems [11], {16] and apply game theory to study convergence. Decentralization is further
complicated when disturbances act on the subsystems, making the prediction of the future behavior uncertain.
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For the trajectory planning problem, several distributed control architectures have been proposed that design paths
locally from the current vehicle location. Much of the current research on the distributed path planning assumes that
each vehicle solves a local problem and communicates this intent information to its neighbors [13], [17]-[21]. These
decentralized algorithms typically lead to a Nash equilibrium [22] or a Pareto optimal surface [17], [23], which
is not necessarily the globally optimal solution, because these so-called “communication-based approaches” [24]
do not use the information about the objective functions of the other subsystems and do not consider the overall
performance. For example, the recently proposed trajectory planning algorithm called Decentralized Robust Safe but
Knowledgeable (DRSBK) generates a local plan over a short horizon while guaranteeing the robust feasibility of the
entire fleet under the action of external disturbances [20]. This algorithm uses distributed robust Model Predictive
Control [18] to predict and account for other vehicles’ behavior. However, because each vehicle only optimizes
for its own control and freezes the decisions of other vehicles, the resulting trajectories can be locally optimal but
globally suboptimal (i.e., coordinated but non-cooperative) [24].

This paper extends the DRSBK algorithm to enable cooperation amongst the vehicles in the fleet. Each vehicle
solves its subproblem in sequence to optimize its own control input, as in DRSBK, but the subproblems can
also explicitly perturb the decisions of other vehicles to improve the global cost. The challenge here is to avoid
reproducing the global optimization for each vehicle. The proposed approach uses a low-order parametrization
of the other vehicles’ decisions to reduce the solution space while retaining the freedom to alter key aspects of
other vehicles’ plans. This effectively enables a negotiation between the vehicles with only a small increase in the
computational complexity of the subproblem optimizations.

The paper begins with the problem setup in Section II. Following the centralized algorithm in Section ITI and
the decentralized non-cooperative algorithm in Section IV, Section V presents the cooperative form of robust
decentralized trajectory optimization algorithm using receding horizon MILP. Section VI proves that the new
algorithm retains the robust feasibility and that each solution of the subproblem monotonically decreases the global
cost. Section VII shows simulation results and compares the performance and computation time of the algorithm.
Finally, experimental resuits are presented in Section VIIL

II. PROBLEM STATEMENT

Notation: In this paper, the index or superscript p, ¢ denotes the vehicle index, index k denotes the current time
step, and index j denotes the prediction step. There are total of n vehicles. Unless otherwise noted, Vp implies
Vp=1,...,n, and Vq implies Vg = 1,...,n but ¢ # p. The neighbor set N} is a set of vehicles that have coupling
constraints with vehicle p at time k. It also determines the order that the vehicles solve their subproblems. pre(p)
and next(p) respectively denote the vehicle that solves the subproblem immediately before and after vehicle p.

A fleet of n vehicles are assumed to have independent dynamics, which are described by the LTI model

af, = Az} + Buf + w}, Vp,Vk M

where xz is the state vector of size ng, ui is the input vector of size n,, and wﬁ is the disturbance vector for
the p™ vehicle. The disturbances w? are unknown but lie in known bounded sets w? € WP. The environment has
obstacles to be avoided, and the vehicles have flight envelope limitations. The general output sets J* capture these

local constraints of each vehicle
yh = Cx} + Duf € Y?, Vp, Vk. 9))

The coupling between vehicles, such as vehicle avoidance, inter-vehicle communication range, and line-of-sight
between vehicles is captured by a further set of constraints applied to the sum of outputs from each vehicle

2 = EPx} e Vp, Vk (3a)
n
Y ez (3b)
p=1
For pair-wise collision avoidance constraints, there are only two matrices £P and E9 that have nonzero entries for
a given row of the output matrix E, and the set Z is non-convex.
Finally, the goal of the trajectory optimization is to minimize the fleet cost composed of individual costs, which

February 17. 2008 DRAFT



JOURNAL OF IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 00, NO. 00, JANUARY 2008 2

could be conflicting. Optimization is performed to obtain the optimal input sequence for each vehicle

min J(Jl,‘..,J"). 4)
u} Vp,Vk

III. CENTRALIZED APPROACH

The centralized approach directly solves the full optimization in Section II. Let UP denote the control input
. . T
sequence of the vehicle p over the next NV steps, ie., U? = [u‘gT, .. .,uﬁ’v‘lT] . Then, a compact form of the
optimization can be written as

: 1
pmin - J (Jh... 0 5)

subject to  Vp: g(U?) <0
h(UP,U%) <0, g€ NP

where g(U?) represents the local constraints for vehicle p, and h(UP,U?) represents the coupling constraints
between vehicles p and g. This approach produces the globally optimal solution; however, it scales poorly because
the optimization becomes very complex for large fleets for most problem types (i.e., quadratic programming and
mixed-integer linear programming) [25].

IV. DECENTRALIZED ROBUST RHC

This section briefly describes the DRSBK algorithm presented in [20], which is a decentralized approach that
decomposes the centralized problem (5) into smaller subproblems. DRSBK is a receding horizon algorithm, which
solves online optimization that develops the control inputs for a finite horizon of NV steps, and implements only the
first step. The optimization is repeated as the system evolves. To reduce the computational burden, DRSBK uses
a short planning horizon, and the remainder of the path to the target is represented by a sophisticated cost-to-go
function that is cognizant of obstacles in the cluttered environment. Invariance constraints are imposed at the terminal
step of the short plan to ensure the safety of the vehicle against the potential changes in the environment beyond
the planning horizon. Each vehicle generates its control inputs by solving a subproblem in sequence, while freezing
the plan of other vehicles. The solution is then communicated to other vehicles in the fleet. The advantages of this
algorithm include robust constraint satisfaction under the action of disturbance, much better scalability compared
to the centralized approach, and requiring only local communication [20].

To simplify the presentation, the planning order is assumed to be 1,...,n. The prediction of a value at time
(k +j) made at time k is denoted by subscript (-)x jjx. Unless otherwise noted, V;j implies j = 0,...,N — 1, and
V;~ implies V5 = 0,..., N — 2. At time k, the p™ subsystem generales its own control inputs u_”lk by solving the
following subproblem

J7 = min f7 (@] ) ©®
B3
s.t. Ve Ty = wi @)
m£+j+1|k :A”x£+j|k+B”uiH|k (8)
Yeriie = CP®p i + Dl € V) ®
- P
zz-l—jlk = Bz, (10)
3 P
Zaile ¥ Zhaite € ) an
T vk € - (12)

Here, the objective function for the entire fleet is assumed to be the sum of the individual costs. The vector 22 ik
is a summation of the outputs from the other vehicles

3P — q q

Zhtjlk = Z Zivie T E , 2t jlk—1 (13)
geNT. qenNT.
q<p q>p

and is constant in this local optimization. The first summation is from the vehicles that have already planned at
time k. The second summation is from the vehicles that have not planned at time £, so that a prediction made at
the previous time (k — 1) is used.
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The prediction (8) does not include the disturbance, but the constraint sets y;’ differ from the original set )P.
To save some margin to account for the uncertainties in the future, the set V¥ is tightened with the prediction step
7 to form )JJP . A linear controller is used to rejects the disturbance [26]

yo - yp

y;’+1 = y;’ ~ (C"Lg + D”P;’)W” \4B (14)

where the operator ~ denotes the Pontryagin difference [27], and L? is the state transition matrix

F=1

LY., = APLE + BPPY V). (15)
Similar tightening is performed on the coupling constraint sets in (11), allowing uncertainty margin for all subsystems
Zhh=Zz : (16a)
Z;re(q) =21~ BILIWVI, V5, g€ N, a#po (16b)
Zﬁl = Z;’O ~ E”"L;’"W’"’, V5~ (16c)

where po and p,, represent the first and the last element of the neighbor set NP, respectively. The operation (16b)
tightens the constraints from the vehicle g to pre(q). This tightening represents that the vehicle pre(gq), which
generates the plan prior to vehicle g, saving some margin for the vehicle g so that ¢ can use it to reject the
disturbances W9. The operation (16¢) tightens the constraints from the prediction step 7 to j + 1. This represents
that the optimization at time k for vehicle p,, saves some margin so that the optimization at time (k + 1) for vehicle
Ppo can use it to also reject the disturbances.

The set QF in (12) is called a safety set, and the terminal states of the plan must end in this set [28]. By using
nilpotent candidate controllers PJ}’ , which makes L%, , = 0 in (15), the safety set can be expressed as a nominal
control invariant admissible set, which has the following invariance property

VP € QF = kP (zP) st
APxP + BPkP(xP) € OF
CPxP + DPrP(xP) € YR,

EPxP + Z Big? e Zy_q, V(xPo,...,xP") € {QF° x ... x QF"}.
gENT

17

where for the vehicles that have not planned at time k, the invariant set obtained in the previous time (k — 1) is
used, i.e.,

QF =9 |, Vg € {next(p),...,pn}

and xP(xP) is a nonlinear control law that the vehicle can use, once in Q}, to stay in QF. For fixed-wing aircraft,
one invariance example is a loiter circle where xP(xP) generates a centripetal acceleration perpendicular to the
heading direction. For rotorcraft, any point with zero velocity is invariant with kP (x?) = 0.

DRSBK minimizes the terminal state penalty fP (:L'f: i le) as the objective function in (6), but the objective
function can readily include the stage cost such as control penalty. For the environment with no-fly zones, a
sophisticated cost-to-go function is used as the terminal penalty that is calculated in two stages [29]. First, prior
to online optimization, shortest path algorithm is applied to a graph-based representation of the environment to
estimate the approximate cost f”(rmme,) to fly from each obstacle corner r.ome to the target. The pairs of corner
locations 7comer and the cost fP(rcomer) are stored as a cost map. Then, the optimization chooses the best corner
P, that is visible from a point OP in the invariant safety set Q} of the vehicle p, so that the cost-to-go function is

Jp:fp(mZ+le) = ”Op_,,,p ||2+fp(r€is)' (18)

vis

For notational simplicity in the later sections, let Cp(mZ.U,f) denote the set of constraints (7)—(12), (18) for
vehicle p. The first argument @} is the initial condition used in the right hand side of (7). and the second argument

. . . T T
U? denotes the control input in the optimization, i.e., U} = [uilk ..... uf~+N~1|k 1.
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Fig. 1. Node p’s neighbor set A and active coupling neighbor set .4, and different types of coupling constraints.

The optimization (6)—(12), (18) is implememed using mixed-integer linear programming (MILP), which can
express logical decisions such as the choice of rm, and non-convex constraints such as collision avoidance. From
the solution at time k, the first control mput uk'k for each vehicle is applied to the real system (1). At the next
time k + 1, the states of each vehicle x% 41 are measured, and the optimization is repeated. The main result of
DRSBK presented in [20] is the robust feasibility guarantee, i.e. feasibility of the optimization (7)-(12) at time k
implies feasibility at time k£ + 1 under the action of disturbance Vw} € WF [30].

The primary advantage of this approach is that the decision space of the subproblem-is approximately n times

qmmiallne than th rrtenliand T Vel +) th vy £
smaller than the centralized approacn, with many iCwer constraints. As a result the Compu{atzo.. time is much

smaller, and the algorithm scales much better than the centralized approach. Furthermore, all the constraints are
robustly satisfied for all vehicles at each time step. However, since each vehicle does not account for the objectives
of other vehicles, the resulting solution is coordinated but non-cooperative. This non-cooperative solution is a Nash
equilibrium, where no vehicle can improve its local cost by changing only its own decision, and is undesirable.
The benefits and limitations of this approach are clearly illustrated in the examples in Section VII-B.

V. COOPERATIVE DRSBK ALGORITHM

This section extends the DRSBK algorithm [20] to enable explicit cooperation. The DRSBK algorithm guarantees
the robust constraint satisfaction under the action of disturbances. However, because the objective function (6) does
not consider the effect from/on the other vehicles as in (4), the resulting solution could be a Nash equilibrium,
where the solution is locally optimal but globally suboptimal. One intuitive approach to resolve this issue is to
include all the decision variables of other vehicles in each subproblem. However, this will reproduce the global
optimization for each vehicle and is clearly not scalable. The proposed approach exploits the sparse structure of
the coupling constraints of trajectory optimization and uses the low-order parametrization of the other vehicles to
reduce the dimension of the decision space.

A. Algorithm Overview

This subsection gives a brief overview of the algorithm to present the main idea. Whereas DRSBK freezes all the
decisions of other vehicles, the cooperative form of DRSBK (called CDRSBK) updates the candidate solutions of
other vehicles by designing a feasible perturbation to other vehicles’ decisions. Each vehicle sequentially solves its
own subproblem as well as slightly modified subproblems of other vehicles. The algorithm iterates over the team
of vehicles, but the simulation results in Section VII-B show that two iterations over the fleet typically produces a
performance comparable to the centralized approach.

Let AP denote a set of vehicles that have active coupling constraints with vehicle p. Figure | shows an example
of a graphical representation of a vehicle fleet. Each node represents a vehicle, and the arc connecting two nodes
shows that there is a coupling constraint between the two vehicles. The shaded nodes in the figure are the neighbors
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of vehicle p, ie., qi,...,q4 € AP, In general, not all of the coupling constraints are active. In this example, active
coupling neighbors of vehicle p are marked with thick lines, and q,, go € AP but ¢3,q4 ¢ AP.
The centralized optimization (3) is broken into the following local optimization for each vehicle p

min J (19)

s e a0

subject to

g(UP) <0 (202)
g(U? +T9€9) <0, g€ AP (20b)
R(UP, U9 <0, gqeNP, q¢ AP (20c)
hUP, U9 +T9) <0, ge AP (20d)
hUT, U +T9€9) <0, rcNIr¢ AP, qc AP (20e)
h(UD 4 T U9 + T2ER) <0, q1,q2 € A”. (20f)

The main difference from the DRSBK algorithm is that the decision variables include UP for vehicle p itself and £9
for other neighboring vehicles with active couplings. The decision for ¢ made in p’s optimization is a perturbation
from the communicated solution UY, so that the control input of other vehicle g is written as

Ud=U9+6U=U+T9¢9, Vqg.

The perturbation U7 is rewritten as dU? = T9£7 using a parametrization matrix 79, which is elaborated later.

The optimization includes the constraints for vehicles p and Vq € AP. The constraints (20a)—-(20b) are the local
constraints for vehicle p and for its active coupling neighbors. The equations (20c)—(20f) express different types of
couplings shown in Figure 1. Type I is between vehicle p and its neighbors with no active couplings; Type II is
between vehicle p and its neighbors with active couplings; Type III is between vehicle p’s active coupling neighbors
and their neighbors; Type IV is between vehicle p’s two active coupling neighbors. Note that some constraints in
h(UP,U9 4 T9€9) < 0 could be omitted if £9 has no impact on them because of the row rank deficiency of 79,
which is discussed in more detail in Section V-B.

A key advantage of this algorithm is that it does not freeze the other vehicles’ plans, so it can avoid the Nash
equilibrium obtained from other algorithms. The next section gives a method for computing the parametrization
matrix 79 that reduces the computational complexity of each local optimization.

B. Reduced-order Decision Space

This subsection discusses the approach for reducing the decision space and how to compute the corresponding
parametrization matrix 79,

1) Active Coupling Constraints: In a typical trajectory optimization, not all of the coupling constraints are active
in the future plans. For example, collision avoidance problems typically have one or two time steps when the vehicles
are close, as shown in Figure 2(a). Furthermore, the relative distance, i.e., the 2-norm of the relative position vector,
can be expressed with a set of linear constraints, but only one of these can be active, as shown in Figure 2(b).
The approach presented here exploits this sparse structure of the active coupling constraints to reduce the decision
space. In particular, a perturbation is only generated when there exists an active coupling constraint between the
vehicles.

It is assumed that the coupling constraints take a linear form

FPUP 4 F1J9 < gPd @n

which can express convex constraints including 1-norm, 2-norm, and oco-norm bounds. Using binary variables, non-
convex constraints can be also expressed in this form in MILP. The subproblem of vehicle p in DRSBK fixed the
decision of other vehicles so that (21) is

FPUP 4 FIUT < g9
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“stay apart” cohstraint
active only here

(a) Trajectory of two vehicles. The collision avoidance con- (b) Two-norm constraints expressed with a
straint is active only at one time step. set of linear constraints.

Fig. 2. “Sparsity” examples in the trajectory optimization

One cooperative form is to change the right hand side in p’s optimization
FPUP + FI09 < g9 — 3 22)

and implicitly expect the vehicle g will take advantage of this change in ¢’s next optimization. The variable § only
needs to change the rows corresponding to the active coupling constraints, because a change in the active coupling
constraints can directly change the decision space U9, leading to the potential change in the cost of vehicle g. The
following form expresses the decision change of ¢ more explicitly.

FPUP 4 p9(U9 4 0U7) < gP? (23)

Without loss of generality, the upper rows of (22)~(23) can be regarded as active and the lower rows as inactive.
By comparing (22) and (23), we have

q ﬁ .
active SUT = active
FI *

inactive

Now the goal is to change Fyive by U9. Note that because there are only a few coupling constraints that are active,
dim{Byciive) is small. The key here is that 8U9 can be parameterized using a variable of smaller dimension.

Let m denote the row rank of Faqctive’ which is also the number of elements in Bave that any 8U? can change
independently. Therefore, a new variable £7 € R™ could replace U4, where in the trajectory optimization problems
the dimension m of £9 is significantly smaller than the dimension of 8U9. Let A denote a matrix composed of the

m independent row vectors extracted from Fl, . Then, 6UY is parameterized by £7 as

U = AT(AAT) 'ga & Tga. (24)

The inverse in this equation exists because the product (AAT) is of full rank m, so the parametrization matrix 79
also exists. The dimension of £9 is much smaller than that of the original control input variables 6U}, so the row
size of T is larger than the column size. In the examples considered in Sections VII-C and VIII, the row size of
T is 2-6 times larger than the column size, illustrating the sparseness assumption.

2) Terminal States: Extra degrees of freedom for the perturbation to ¢’s decision could be obtained by parame-
terizing the decision variables through the terminal states in addition to the active coupling constraints. The main
motivation is that the performance of DRSBK algorithm depends strongly on the location of the invariant safety
set in which the terminal states mZ+N|k lie. Since

“Z[k
Ty e = Thp +[AYIB, - AB, B : £z, +CU,

q
Ui N-11k
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the perturbation in the control inputs are parameterized as
SUR = CT(CCT) " oy, = TIE9. (25)

This parametrization matrix 79 always exists when the system is controllable and hence the matrix C has full row
rank. The parametrization (25) reduces the dimension of the decision space from U}, which is Nn,, to dx] N
which is n,. Note that for collision avoidance problem, if vehicles p and ¢ are far apart and do not interact with
each other, the variable £9 that generates perturbation U has zero dimension in p’s optimization because the
coupling constraints are not active.

3) Constrained Terminal States: When an invariant constraint is imposed on the terminal states of the plan
(e.g., the hovering constraint for rotorcraft), the parametrization matrix must be formed differently. This subsection
discusses the parametrization when the terminal velocity cannot be perturbed. Let Cpos 2 [I, O] and Cye = [O, I]
for a double integrator system, where

q
k+N|k

or

q
o q
k4 Nk

k+Nk — [5,,

vel

= l:Cpos:l C&[]’g

In order to keep the same terminal velocity, i.e., v} ~x = 0, the perturbation U, 7 must lie in the null space of
CyeC. Such U z,.can be realized using a new vector 7

Ul = En (26)

where E denotes an orthonormal basis for the null space of C,qC. With (26), the perturbation to the terminal
position is written as

MZ+N|I¢ = CposCEN.
By making the perturbation &r] , . as the decision variable £9, 7 is parameterized as
-1
7 = (CposCE)T((CposCE)(CposCE)T) €.
Combining this with (26) gives
U = E(CposCE)" ((CposCE)(CposCE)T ) ™1€9 £ T9¢0, @n

This 6U{ changes the terminal position r] N[k without changing the terminal velocity v} Nk Note that £9 in
(27) has the same dimension as the position, whereas the dimension of £9 in (25) is n,.

4) Fixed Binary Variables: To account for non-convex constraints such as vehicle/obstacle avoidance or minimum
speed, the overall optimization is implemented using MILP. Binary variables in MILP encode logical constraints
or non-convex constraints but are the major source of the computational complexity in the MILP solution process.
With the goal of obtaining small perturbations for other vehicles’ decision, the CDRSBK algorithm fixes binaries
of other vehicles, while solving for perturbations of their continuous variables.

Figure 3 shows the effect of fixed binaries used to express the obstacle avoidance constraints (detailed equations
given by (40) in Appendix). In region A, the admissible binaries are [0, 1, 1, 1] where 1 means the avoidance
constraint is relaxed. In region C, the binaries are [1, 1, 1, 0]. The regions By, B, have three possible binary
settings [0, 1, 1, 1], [1, 1, 1, 0], and [0, 1, 1, 0], and the output of the MILP solver could be any of them. If the
binaries are fixed [0, 1, 1, 0] for a point in region B, which is a union of B; and By, then the perturbed point
must also stay inside the region B only. To enable larger perturbations, CDRSBK algorithm performs a MILP
pre-processing and sets [0, 1, 1, 1] as the binaries of the point in B, which allows the point to move within A,
By, and B.. Similarly, the point in By uses the binary setting [1, 1, 1, 0]. As an illustration of this binary fix,
Figure 3 shows feasible and infeasible perturbations from a point @ with o and x respectively. The binaries of the
non-convex minimum speed constraints are fixed in the same way to allow for maximum perturbation, as shown
in Figure 4.

Note that the problem statement includes many binary variables that are effectively fixed or constraints that are
always satisfied (e.g. the lower left side of constraints in Figure 4). The MILP solver CPLEX eliminates these
redundant variables and constraints in the pre-solve step, and the size of the CDRSBK subproblem increases only
slightly from the DRSBK subproblem. In the example shown later in Section VHI-C, the number of variables after
the CPLEX pre-solve increased by 15% for continuous variables and 1% for binary variables.
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L 2| Full optimization
[ Fixed binaries
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Fig. 4. Feasible perturbation of the velocity, with fixed vy, binaries

Fig. 3. Feasible perturbation of the position, with fixed obstacle
avoidance binaries

For the fixed-wing aircraft, when the terminal safety constraint requires the plan to end in a loiter circle, there
is one exception in the binary fix. The location of the safety circle has a large effect on the objective value, and
therefore it is beneficial to keep the binary variable that selects left or right circle (b, in (44) in Appendix) as a
decision variable in p’s optimization.

C. Subproblem
This subsection gives a brief explanation of the subproblem that each vehicle solves. The Appendix gives a
detailed implementation using MILP. Let CP(z, UT) denote a set of constraints that is the same as CP(x%,UY)
except that the tightened constraint equations (9) and (11) are replaced by the following
Vi yz+j|k € yf+1 (28)
(29

with Y}, £ )% | and 2% £ ZR,_,, which are consistent with the tightening equations (14) and (16) under the
nilpotency assumption L%,_, = 0. Then, the vehicle p solves the following optimization P%:

min J
gL, gp—L UP grt1 g

s.t. (24),(25) or (27),
F(Cl(m}c, O+ 8UL), ..., oY@l P~ 4 6UP™Y), CP(a?, UP),

CPHU (alil | UPH + U™, O &Ry UT w,:)) <0 (30)

The function F(-) represents the constraints imposed on all vehicles. In this optimization, vehicle p designs its own
control U? as well as perturbation to other vehicles’ control 8U},...,0UP~", sUP*! ... UZ. The notation (-)°
denotes the variables that are received from other vehicles and are constant in vehicle p’s subproblem, so that the
control inputs for vehicle g are

U = U + 8U{. @31

As shown in (30), if a vehicle ¢ has already planned at time k: i.e., ¢ < p, then the vehicle p uses Cq(mz, (_/g+ &]f)
as the constraints for q. Otherwise, the constraints for g are Cq(:cz kel U,Z + U ,‘j), where the initial states are the
states predicted in the previous plan. The objective is to minimize the fleet cost (4). After solving the optimization,
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Algorithm 1 Cooperative DRSBK
1: Find a feasible solution of the DRSBK optimization starting from the initial states mg, communicate the

solutions, form U}, ..., U%, and set k = 1.
2: fork=11t0 k=00 do
3:  Form the candidate control U}, ..., U from the previous solution U} _,,..., Ul ; using (32).
4 repeat
5 forp=1,...,ndo

6 Measure the current states and form 7.

7: Solve the subproblem P} and obtain the solution U pY gax,

8 Update the control U} := Urt, U = U,Z + T9ge*,

9 Send the solutions to the next vehicle.

10: end for

11:  until converges or reaches the iteration limit

122 Apply the first step of the control inputs u} = iz’,zl . to the system (1), Vp.
13: end for

the solution (-)* updates the control as
Up=0r"
Ui =U{+ 08U, Va#p

which are sent to the next vehicle p + 1.

The full CDRSBK algorithm is shown in Algorithm 1. In the line 7 of Algorithm 1, the vehicle p makes a
decision on itself and its neighbors. As shown in line 3, when the time step is incremented, the candidate decisions
U for the current time are constructed from the decisions U »_, made at the previous time, using

. =D — P -~
Vp: Y tite = Yeajlk—10 vj (32a)
=P — W P (P
UppNotje = 1 (93k+N_1,k“1)~ (32b)

This operation shifts the plan U,f_l by one time step and appends the terminal step taken from the invariance
control law xP(x) in (17). The states &} N1kt Are obtained through the state equation

=P _ APRP D P
Ly N+1k-1 — A &y Nk T B Ykt Nk—1"

Note that the local optimization (19) requires the knowledge of other vehicles’ cost function, but this depends only
on the target score, target location, vehicle states, etc., and is simple to communicate.

D. Implementation with Non-zero Computation Time

To run the algorithm in real-time on the vehicle hardware, non-zero computation and communication times must
be handled. This is done by propagating the measured states when forming % in line 6 of Algorithm 1. Figure S
shows the time lines of the CDRSBK algorithm implementation.

The discrete time step k is defined as the time when the control wuy;, is executed in line 12 of Algorithm i. The
latest measurement is taken 7 seconds before the discrete time, where 7 is an upper bound on the computation
and communication time to the discrete time. As shown with the gray arrow, the vehicle propagates the measured
states up to the discrete execution time using a model of the vehicle and the low-level controller. The propagated
states @y, are then used as the initial condition of the optimization at time &. When the last vehicle finishes its
computation, it broadcasts the final plans to the fleet, and all vehicles implement the control at the same time. Note
that when the vehicle p is planning at time k, the prediction for vehicle p — 1 is based on the latest states :cfl kl
and the inputs uﬁzl, but the prediction for vehicle p + 1 is based on the states :nflt and the inputs u l k , that
are predicted at the previous time & — 1.

By aligning the states and the control inputs of all vehicles at the discrete time steps, this framework compiles
various sources of uncertainties into one and allows us to treat them as a single prediction error, which can be
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Fig. 5. Time flow of CDRSBK algorithm with non-zero computation and communication time

calculated simply as w%_; = mil e a:il - Future work wili extend this implementation to reduce the delay
associated with the propagation, as studied in [31].

V1. ALGORITHM PROPERTIES

This section discusses the two important properties of CDRSBK algorithm in terms of constraint satisfaction and
the performance.

A. Robust Feasibility

The following theorem guarantees the robust feasibility of the entire fleet after solving each subproblem.
Theorem 1: If a feasible solution Uol, ..., Ug to the following constraint ((30) with £ = 0, p = n) is found

F(cl(mg,a}),...,c"(wg,Ug)) <0 (33)

then, the system (1) controlled by Algorithm 1 satisfies the constraints (2)-(3) under the action of disturbance
w¥ € WP for all vehicles p and all future times & (> 0).

Proof: The proof builds on the robust feasibility property of DRSBK algorithm, using the fact that the CDRSBK
algorithm reduces to the DRSBK algorithm when no perturbations are allowed. In DRSBK, it was shown in [20]
that given a feasible solution at time k — 1, the following candidate solution

WYy = W T PR wioy, Vi (34a)
j’iﬂ]k = §’£+J‘|k—1 +LEwl ), V) (34b)
il’z+N-1|k = ”p(j’Z+N_1|k)» (34c)
i:£+N|k = Api’i+1v—1|k + B (34d)

is feasible to vehicle p’s optimization at time A for any disturbance realization w},_,. Therefore, in CDRSBK, using
(34) for its own decision and using

ST =0. Vg (35)
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for other vehicles’ decisions form a feasible candidate solution for p’s optimization. This shows the feasibility at
time k& — 1 implies the feasibility at time k. By recursion, if the optimization at time k = 0 is feasible, all future
optimization is feasible, which means the vehicles satisfy all the constraints. [ ]

Remark 1 (Anytime algorithm): Because the entire vehicle fleet retains feasibility after solving each subprob-
lem, the algorithm can be stopped at any time in the iteration.

B. Monotonic Decrease of the Fleet Cost

Another important property of CDRSBK algorithm is that the fleet objective is monotonically decreasing by
solving each subproblem.

Theorem 2: The fleet objective value monotonically decreases by solving each subproblem P% over the fleet
(line 5 in Algorithm 1) and over the time (line 2).

Proof: The proof is based on showing that the candidate solution to p’s optimization yields an objective value

that is no worse than the objective value found in the optimization of the previous vehicle p — 1 (or n if p = 1).

In p’s subproblem, the candidate solution (35) does not change variables for vehicles Vg, and hence yields the
same local cost for other vehicles J? that was found in the optimization by p — 1. For the cost of vehicle p itself,
with the assumption of nilpotency LR, ; = 0, the terminal states can be written as

=P — APZP P, P (7P
TryNk = ATy oy +BOR (wk+N~1|k_1)

using (34b)—(34d). The individual objective value JP depends only on the point OP in the invariant, which can
remain at the same location using the invariant terminal controller xP(-) (e.g. loitering in a circle with a constant
turn radius, or hovering). This implies the candidate solution (34) produces the same individual cost J? obtained
at the previous optimization. Because p’s optimization can use the candidate solution to achieve the same fleet cost
obtained by the previous vehicle (p — 1), the fleet cost can only improve by optimization. n
Note that this does not mean the individual cost decreases monotonically. The simulation results in Section VII
and VIII demonstrate a temporary increase of the individual cost that leads to a greater reduction of the fleet cost.

VII. SIMULATION RESULTS

A. Vehicle Model

The simulation uses homogeneous n vehicles. A point-mass mode! is used to approximate the translational
dynamics of UAVs

7'£+1 — AP rh BPaP p
v |~ b + BPa} + wh (36a)
Ig At [2 ] (At)2 I
AP = , BP = 2 2
[ 02 I At (36)

where 7P, v?P, and aP are the position, the velocity, and the acceleration vector respectively. Matrices I; and O,
express an identity matrix and a zero matrix of size 2 respectively. The disturbance wf, enters through the input

wh e WP ={w | w=D5Bn, neR? |n|, < Wnax}- 37
The local constraints include the obstacle avoidance, the maximum/minimum speed, and the maximum input
constraints
e ¢ O,
Umin < |03y < Vmax
||a’;3||2 < Gmax

where @ C R? expresses the no-fly zones, and vnin. Vmax, @max are the minimum speed, maximum speed, and
maximum acceleration of the vehicle.
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Fig. 6. The evolution of plans over the iteration for the simple two vehicle example.

B. Iteration Within Each Time Step

The first set of simulation is based on the simplified problem setup to evaluate the solution within a single time
step. Only the convex constraints are considered, so no binary variables are used. Furthermore, zero disturbance is
assumed and hence no constraints are tightened.

1) Simulation Setup: In this simulation, At in (36) is set to 1. The parameters for the constraints are vmi, =
0, Vmax = 0.35, amax = 0.18, and ||'r'£||2 < 1. The systems are coupled with two neighbors through the following
position constraints.

“ri—rg“ﬂz <08, p=1,..n-1
% - r,ch2 <0.8

These two-norm constraints are expressed as a combination of linear constraints. The cost direction for the p'
vehicle is T
= p=1 inf 2=t
cp = [Cos( - ) sm( - )} .
The overall cost function to minimize is quadratic, and has a stage cost and the terminal penalty
n N-1
T T T
Z Z{zi Rz} +uf RzuZ} +e,Trh + r2, Hr¥,
p=1 k=0
where the weights on the states R; and inputs Ry in the stage cost are chosen to be much smaller than the weight A
on the terminal position. All the vehicles are initially at the origin. Both the centralized and the local optimization
are written as quadratic programming, and CPLEX 9.1 is used as a solver.

2) Simple Two Vehicle Case: The first example involves two vehicles p and g that can move on a two dimensional
plane. The terminal position of the vehicle p has its local minimum at coordinates (0, 0.7), i.e.,

0 12 arg min{c,-T'rfV + r‘]'(,THr’IL.},
0.7 rh
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Fig. 7. Final plans for five vehicles

and that of the vehicle g is at (0, —0.7). Because the two vehicles must satisfy the separation constraint of 0.8,
their separate objectives are conflicting. The planning horizon is three steps for both vehicles.

Figure 6 shows the evolution of plans over two iterations. The plans of vehicle p are marked with o, and those of
vehicle g are marked with x. Originally, both vehicles are at the origin. First, vehicle p solves its local optimization.
Because no coupling constraints are active at this point, the terminal position reaches the local minimum (0, 0.7).
Vehicle ¢ then solves its optimization, but given the separation constraint, this vehicle can only plan to move to
(0, —0.1), as shown in the second part of the figure.

The vehicle p solves the next optimization, but since a coupling constraint has become active, it uses a parameter-
ized decision for ¢ with a variable £9 of dimension m = 1. The bottom figure shows the plans after two iterations.
The final plans are the same as the globally optimal centralized solution.

If the decentralized non-cooperative algorithm in Section IV were used, it would produce a Pareto optimal solution
shown in the second figure of Figure 6, which is clearly not the globally optimal solution shown in the bottom. Note
that if the vehicle ¢ plans first followed by vehicle p, the non-cooperative algorithm results in a symmetric Pareto
optimal solution, which again is not the globally optimal solution. This example clearly shows the performance
improvement over the decentralized non-cooperative approach.

February 17. 2008 DRAFT



JOURNAL OF IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 00, NO. 00, JANUARY 2008 14

2.2“‘ T T T T T |

=== cooperative
2r # non-cooperative
L QO centralized

-— — —
i o)) oo
; T
i 1

-
N
T

I

objective value

0.8 1

POl e o |

0‘4 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5

cumulative computation time (sec)

Fig. 8. Comparison of three algorithms in terms of performance and computation.

3) Five Vehicle Case: Figure 7 shows a more complex case with five vehicles. In this example, the local minimum
for each vehicle is located on a unit circle centered at the origin. The planning horizon is three steps for all vehicles,
and the planning order is 1 — 3 — 5 — 2 — 4 to highlight the effect of the planning order on the performance.

Two other algorithms are used as benchmarks. These are: 1) the centralized approach in Section III that provides
the globally optimal solution, and 2) the decentralized non-cooperative approach in Section IV that produces a
locally optimized solution.

As shown in Figure 7(b), the decentralized non-cooperative approach produced a suboptimal solution, because
the vehicles that plan earlier are less constrained and have more region to operate than the vehicles that plan later
in the cycle. The decentralized cooperation algorithm produced the trajectories shown in Figure 7(c) whose shape
are very similar to the centralized solution shown in Figure 7(a).

4) Performance and Computation: Figure 8 compares the global objective value and the cumulative computation
time of three algorithms for the five vehicle example. Different lengths of the planning horizon N = 4,6,8 were
considered to investigate the scalability of the algorithms.

The solutions of the decentralized non-cooperative approach are marked with *. Although the computation time
is small, the cost is fairly high. The centralized (and hence globally optimal) solutions are marked with o. The lines
with x show the evolution of the global cost of the decentralized cooperation algorithm. The plot starts from the
end of the first iteration when every vehicle has its solution and continues to the end of the second iteration. This
proposed algorithm has objective values comparable to those of the centralized solution but scales better than the
centralized solution when the problem size increases.

Figure 9 shows cases with more vehicles (n = 5, 7, 10, 15). The decentralized non-cooperative approach has
much higher cost and is out of the range of the plot. For the centralized and the proposed approach, the differences
in the computation time scale up significantly for larger fleets. Note that in all the plots of Figures 8 and 9, the lines
of the proposed approach are monotonically decreasing, which validates the result in Section VI-B by simulation.
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Fig. 9. Trade-off between the performance and the computation time. From the top to the bottom, the number of vehicles are 5, 7, 10, and 15.

C. Full CDRSBK Algorithm

This section presents the performance comparison of DRSBK and CDRSBK through simulation.

1) Setup: The simulation uses fixed-wing UAVs, whose dynamics are (36) with At = 5. The disturbance
magnitude wmay is 5% of the control authority amax. The planning horizon length N is 4. The parameters for
dynamic constraints are: Umin = 18, Umax = 24, @max = 3.84. A two-step nilpotent controller is used for this
system to tighten the constraints in (14) and (16), and the parameters for constraint tightening are obtained through

(39) in the Appendix

ap =0, Bo =0, ¥ = 0,
a; = 2.4, b1 =14, v = 0.54,
When the coupling constraints are active, the parameterization matrix 79 is calculated from (25)
[ 0.012 0 ~007 0
0 0.012 0 —0.07
0.004 0 0.01 0
e _ 0 0.004 0 0.01
—0.004 0 0.09 0
0 —-0.004 0 0.09
—0.012 0 0.17 0
| 0 —0.012 0 0.17 |
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Fig. 10. Comparison of trajectories executed.

showing the “tall” parameterization matrix that reduces the dimension of ¢’s decision space. Although the objective
function can be an arbitrary function of all vehicles’ decisions, the goal of the trajectory optimization is assumed
to minimize the mission completion time of the fleet in this example. The summation of the individual cost is also
included with a small penalty e, so that the vehicles that complete the mission before the last vehicle also minimize
the individual completion time.
n
J(J0, o, ") = max JP(UT) +e) JP(UP) (38)
p=1

2) Results: The scenario considers two vehicles trying to reach their own targets (marked with O) while avoiding
obstacles and the other vehicle. The goal is to minimize the mission completion time with a small penalty € = 0.05
on the individual cost in (38). Figure 10 shows the trajectories generated by DRSBK and CDRSBK algorithms.
The trajectory of vehicle 1 is marked with x, and that of vehicle 2 is marked with A. Because vehicle 1 has to
traverse a longer route, the optimal solution is for vehicle 2 to move over, which is the behavior achieved by the
CDRSBK algorithm. Both distributed algorithms maintained feasibility under the action of disturbances. However,
DRSBK subproblem solely minimizes the individual cost without considering the performance of the other vehicle,
making no improvement on the cost for some time.

This cooperative behavior is also seen in the plot for the objective values. Figure 11 shows the time history of the
individual cost J? and the fleet cost J. Both algorithms monotonically decrease the fleet objective. As shown in the
right figure, the cooperative formulation allows the individual cost to increase if it leads to a larger improvement of
the fleet cost. Between optimization #14-17 (which correspond to time 7-9), the vehicle with a better cost (vehicle
2) yields to the vehicle with a worse cost (vehicle 1), enabling a large reduction in the fleet cost J. The average
computation time for solving MILP in this scenario was 0.050 second for DRSBK and 0.064 second for CDRSBK.

VIII. HARDWARE RESULTS

A similar scenario is tested using an unique quadrotor testbed developed at the Aerospace Controls Laboratory
of MIT.

A. Quadrotor Testbed

This section briefly describes the quadrotor testbed. More details are available in the recent article [32]. As a
sensing device, the testbed uses a Vicon motion capture system [34], which are the cameras shown in background
of Figure 12. The Vicon system provides a position estimate of sub-millimeter accuracy at 100 Hz, and the filtered
time difference gives a velocity estimate of 1 cm/s peak-to-peak accuracy. The vehicles are commercially available
Draganflyer V Ti Pro [35], and no significant modifications was required to the hardware to fly them autonomously.
Several lightweight reflective markers are attached to each vehicle in a unique configuration, which the Vicon system
uses to track the position and orientation of each vehicle in the room. The low-level controller is designed to track
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Fig. 11. Time history of the objective function

Fig. 12. Quadrotor testbed using Vicon system [32]. {33]

waypoints which are provided in reai-time by the planner. The waypoint follower was designed using standard LQR
techniques, which calculates the motor commands of each rotor off-board and sends them to the quadrotor using
an R/C transmitter [32].

A planning laptop is assigned to each vehicle, and the inter-vehicle communication is implemented as a com-
munication over the TCP/IP network.
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y [m]

x [m]

(a) Vehicle 1

x [m]

(b) Vehicle 2

Fig. 13. The plans and the trajectories of two gquadrotors from the CDRSBK algorithm experiment

B. Result

The objective of this experiment is to demonstrate that the algorithm can generate online a trajectory using receding
horizon techniques. Many disturbances sources exist in the hardware experiments, such as air flow, modeling error
of the vehicle, sensing noise, communication delay, and imperfect tracking of the low-level controller. The CDRSBK
algorithm must account for these uncertainties to robustly satisfy the constraints. The following parameters were
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Fig. 14, Individual costs and the global cost
used in the algorithm.

At = 2.5sec, N =6

71 = 1.3sec, T, = 0.7sec

Umax = 0.30m/s, Amax = 0.45 m/s?
wy, = 0.27m, W, = 0.09m/s

where 7, and 7, are the propagation time for vehicle 1 and 2, as shown in Figure 5. Here, the disturbance enters
separately for position and velocity. Because the quadrotors can hover, the full stop was used as the terminal safety
constraints. The procedure in [26] produced the following constraint contraction parameters in (39).

ag =0, Bo =0, Yo =0,

a; = 0.27, B = 0.09, v = 0.067,

ay = 0.428, B2 = 0.198, v2 = 0.106,

a; = 0.440, 3; = 0.208, +; = 0.110, ji>3

The vehicles 1 and 2 started around (1.5, 3.5) and (—1.2, 2.5) respectively. The targets for vehicle 1 are
(—1.5, 3.0) are (—2.4, 5.0), and the targets for vehicle 2 are (1.2,2.3) and (2.0, 3.5), which are all marked with
X. The vehicles must switch the position while avoiding the other vehicle and the obstacle in the middle.

Figure 13 shows this scenario and the plot of the trajectory of each vehicle. The red thick line is the actual
trajectory of the vehicle, which were recorded at 2 Hz. All the plans generated in the receding horizon framework
are shown with blue lines.

As a result of their initial locations, vehicle 2 approaches the bottom of the obstacle before vehicle 1, and vehicle
2 then tries to go along the bottom of the obstacle, as the planned trajectories in Figure 13(b) show. This would
have the effect of delaying vehicle 1, which has targets that are further away, and already has a longer mission to
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execute than vehicle 2. Thus, vehicle 2 yields way to vehicle 1 to minimize the fleet mission completion time in
(38). This cooperative effect is also shown in Figure 14, which plots the objective values of the first 15 plans. Note
that between plans 5 and 9, there is a temporary increase of the cost for vehicle 2, but, even under the action of
disturbances, the total objective value is monotonically decreasing. The average computation time for each local
optimization on a 2.4 GHz laptop was 0.31 second. This flight test successfully demonstrated the cooperative
behavior by the distributed online planning algorithm.

IX. CONCLUSIONS

This paper presented a robust decentralized trajectory optimization algorithm that includes explicit cooperation.
Each vehicle sequentially solves the subproblem, but the subproblem also includes the global objective and feasible
modifications to other vehicles’ plans. The overall optimization is written in MILP. In order to maintain the
scalability of the algorithm, continuous variables of neighboring vehicles are parameterized using a variable of
smaller dimension, while most binary variables are fixed. It is shown to guarantee the robust feasibility and the
monotonic decrease of the global cost. Simulation results showed that the proposed algorithm scales much better
than the centralized approach and the performance is much better than that of the non-cooperative approach with
a marginal increase in the computation. The algorithm was implemented on the quadrotor testbed, and the various
features of the algorithm have been successfully demonstrated.

APPENDIX

The following describes the MILP implementation of the CDRSBK algorithm. In this section, the disturbance is
assumed to be infinity-norm bounded, i.e., WP = {Gw | |w||,, < Wmax}

A. Constraint Tightening for Robustness

The constraint tightening in (14) and (16) are implemented by using the following constraint contraction param-

eters [36]

ap =0, aj=a; 1 +||[1000]LY_, G| wmax, j>1
fo =0, Bi =B + 00 1 0]L8_, G|, wimax, 5> 1
o = 0, v ="-1+ |1 O]K;’_ng_chIwmax, i>1 (39

where o, 3;, and v; respectively represents the constraint contraction for position, velocity, and input for the j®
prediction step.

B. Output Constraint Set (9)

For each point [, y]7 and each rectangular shaped obstacle defined by two corners [Tiow, Yiow]” and [Zhigh, yhigh]T,
the obstacle avoidance constraints can be written using binary variables

Yo, Vj: xiﬂ.lk < Tiow,, — 5 + M bf)’bst,],ol (402)
y£+j|k S Yow, — ¥ Mbgbst,jog (40b)
$Z+]'|k Z Thigh,, T @) — M bﬁbst.jog (40c)
Veriik = Ynigh, + 05 — M bsbsn.jo4 (40d)

Z b]ojbst.jm' <3 (40e)

i=1
where M is a large number to relax the constraints in (40a)—(40d), and o denotes the index of the obstacle. The
logical constraint (40e) requires at least one constraint in (40a)-(40d) be active. Note that the parameter «; tightens
the constraints.
The output constraint (9) also includes the bound on speed and inputs. Let vectors 7, v, and a respectively
represent position, velocity, and acceleration input in the inertia frame. A set of ny linear constraints approximates
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the two-norm bounded constraints on the acceleration and velocity vectors, which in turn limits the maximum
turning rate

[COS O, sin 0m] vi"’jik < Vmax — \/2/3] (41a)
[cos O, sin 6m] a£+j|k < Gmax — \/§7j (41b)
2
0, =" Ym=1,... ng
Ng

The scaling v/2 is multiplied to account for the effect of the infinity-norm bounded disturbance on the two-norm
bounded constraints. The minimum speed constraint is non-convex and requires n, binary variables to express in
MILP

[coS Orm, sin 9m]”i+j|k > Umin + V285 — zvmaxbfel,jm (42a)
ny
Z bgel,jm Sy —1 (42b)
m=1

For vehicles ¢ (> p), the subscript j in the the constraint tightening parameters «;, §;,y; must be replaced with
7 + 1, as shown in (28)—(29).

C. Invariance Constraints (12)
For the fixed-wing aircraft, the vehicle has an option to enter left or right loiter circle from the terminal states.
The center of the left and right safety circles are

n p

O =rh e+ R(3) Ve (43a)
m p

or :rz+le+R(—§) g e (43b)

where R(f) is a rotation matrix of angle #, and p is the radius of the turning circle given by

— (Umax - ﬂN)2 % VUmax — ﬁN
Gmax — TN Ymin + ﬂN .
The second term accounts for. the variability of the terminal speed ||v} n N|k||. The binary variable b, chooses
either the left or right safety circle

O{ — 2([) + OéN_1)(l — bfef{)

<OP<OV+20p+an_1)(1—by) (44a)
Og —2(p+ OéN_l)blI;ﬂ
< O” <Op +2(p+an-1)bly (44b)

where the cost-to-go (18) is evaluated from OP. With the notation OP = [x%er, YPuner) ' the obstacle avoidance
constraints of the safety circle are written as

Vo: ‘rfenter < Tiow,, — (,0 + aN_l) + M bfir&obst.ol (45a)
Yeemer < Yiowo — (P AN 1) + M bl (45b)
'T'femer Z Thigh., + (P + aN‘I) - M bfirc-obsl.o‘? (45¢)
y‘l;eme" 2 Ynigh, (p+an-1)—M b?irc—obst.w (45d)
Z circ-obst. ; <3 (45¢)

=1
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D. Interconnected Constraints (11)
Over the planning horizon, the coupling constraints include vehicle avoidance constraints

Ty ik < Thg i~ Grota + MULG, (46a)
y£+j|k < yz-{'ﬂk - d?o(al bpeh 32 (46b)
Ttk 2 Thpgin + dom — MG, o (46¢)
y:-l—ﬂk 2 yZ+ﬂk + dlotal Mbpeh 74 (46d)
4
Do vh <3 (46e)
i=1
where

pa 2d + 2a;, qg<p
total 2d + a; +aj1, ¢g>p

where d is the size of the vehicle region that other vehicle must not enter. Beyond the planning horizon, constraints
on the safety circles ensure the vehicle avoidance

Z‘femer < xcenter 2(:0 +d+ QN - 1) + M b, c:rc 1 (473)
yfemer < ycenter 2(/) +d+an_ 1) + M b cm: 2 (47b)
l‘femer Z mcemer + 2(P +d+an- 1) M bf;(rlc 3 (47¢c)
Yeenter > Yeener +2(p +d +an_1) ~ MG | (47d)
L bine,; < (47e)

E. Objective Function

The objective function (18) uses a binary variable by;s to select one visible point r; from a list of cost points,
from which the cost-to-go is known. Let Tep,; denote the i™ cost point and ¢ = 1,...,ne where ngp is a number
of cost points stored in the cost map. Then,

Tep

VIS Z vis, ; (48a)
Nep

Z A (48b)

Pl = Z (48¢)
JP > [cos b, s1n0m](0p —-rP )+ f”(rm) vm (48d)

where the cost f”(rfp_i) from each cost point to the target of vehicle p is calculated prior to MILP and is constant
in MILP.

To ensure the selected cost point ¥, is visible from a point O in the invariant set QF, obstacle avoidance
constraints are enforced on nj, interpolation points that are placed on the line connecting r’v”h and O

P Genper + (1= lll)”l?v.q < Tiow, — an—1 + M bﬁ“ lo1 (492)
tYeener + (1= 10)Y% < Yiow, — an—1 + M, (49b)
T emer + (1= ) Th > Trigh., +an1 — MY, (49¢)
HiYeener + (1= BOYE, > Ynigh, +an—1 — BOL (49d)
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4
DBLAVES: (49%)
i=1
l
= —, l:].,...,nim.
Tint
E Decision Variables
The inputs are constrained to be
T
T T =
Var oo |uly s W ] = Ul +T%". (50)

The binary variables are fixed if the superscript does not include p, except for b, which selects the left/right safety
circle

Vg by = bl (51a)
Diire-obst = Blkrc-obst (51b)

b = bl 1)

Bl = bl (51d)

bug = bien Vr#p, r#4q le)

birecire = Vlrecier VP #D, T #4 516

In summary, the MILP implementation of subproblem Pﬁ is to minimize (6) subject to (7)-(8), (40)-(51).
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